Normalized defining polynomial
\( x^{15} - 5 x^{14} + 40 x^{13} + 130 x^{12} - 495 x^{11} + 6533 x^{10} + 10770 x^{9} - 9120 x^{8} + 560000 x^{7} + 422300 x^{6} + 552212 x^{5} + 7024160 x^{4} + 37747640 x^{3} - 2612120 x^{2} + 280653460 x + 350125148 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-81768020500282951857411490366375000000000000=-\,2^{12}\cdot 5^{15}\cdot 11^{13}\cdot 1801^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $846.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 1801$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{22} a^{10} + \frac{1}{22} a^{9} - \frac{4}{11} a^{8} - \frac{2}{11} a^{7} - \frac{3}{22} a^{6} + \frac{7}{22} a^{5} - \frac{1}{11} a^{4} + \frac{4}{11} a^{3} - \frac{2}{11} a^{2} + \frac{2}{11} a + \frac{5}{11}$, $\frac{1}{44} a^{11} - \frac{1}{44} a^{10} + \frac{3}{11} a^{9} - \frac{5}{22} a^{8} + \frac{5}{44} a^{7} - \frac{9}{44} a^{6} - \frac{4}{11} a^{5} + \frac{3}{11} a^{4} - \frac{5}{11} a^{3} - \frac{5}{22} a^{2} + \frac{1}{22} a - \frac{5}{11}$, $\frac{1}{44} a^{12} - \frac{1}{44} a^{10} - \frac{5}{22} a^{9} + \frac{3}{44} a^{8} + \frac{1}{4} a^{6} + \frac{4}{11} a^{4} + \frac{3}{22} a^{3} - \frac{1}{11} a^{2} - \frac{1}{2} a - \frac{2}{11}$, $\frac{1}{44} a^{13} - \frac{1}{44} a^{10} - \frac{19}{44} a^{9} - \frac{1}{22} a^{8} + \frac{5}{11} a^{7} + \frac{5}{44} a^{6} - \frac{9}{22} a^{5} - \frac{1}{22} a^{4} + \frac{3}{11} a^{3} + \frac{4}{11} a^{2} - \frac{5}{22} a - \frac{2}{11}$, $\frac{1}{20315682583372749850806533823979203653399505364} a^{14} - \frac{15707184793701329848374343949822194857028304}{5078920645843187462701633455994800913349876341} a^{13} - \frac{61574351834629260639586377512518070429873693}{10157841291686374925403266911989601826699752682} a^{12} - \frac{117539600449448516928874994693431235911532601}{20315682583372749850806533823979203653399505364} a^{11} - \frac{74173665347774785765360596634983999251464871}{20315682583372749850806533823979203653399505364} a^{10} + \frac{2279360733857892831345950282579094600222395832}{5078920645843187462701633455994800913349876341} a^{9} - \frac{1701422585307883399411120530798959235310179213}{10157841291686374925403266911989601826699752682} a^{8} + \frac{6634175881268993837313971821303311513769171077}{20315682583372749850806533823979203653399505364} a^{7} + \frac{1616156420516363396172377942097919755481392409}{10157841291686374925403266911989601826699752682} a^{6} - \frac{846772164355219559883786209350616826370180174}{5078920645843187462701633455994800913349876341} a^{5} - \frac{550302013912758998615847528223451208025234380}{5078920645843187462701633455994800913349876341} a^{4} - \frac{113999441513899286628900534058914742045016971}{5078920645843187462701633455994800913349876341} a^{3} - \frac{3902395105259363241350481933877301424493706233}{10157841291686374925403266911989601826699752682} a^{2} + \frac{30074021647197552142486255401784443684401182}{461720058713017042063784859635890992122716031} a - \frac{1796395619060167428515261648447806726602021675}{5078920645843187462701633455994800913349876341}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 799236990706202.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.19811.1, 5.1.732050000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.15.15.40 | $x^{15} + 10 x^{14} + 5 x^{13} + 20 x^{12} + 20 x^{11} + 17 x^{10} + 10 x^{9} + 15 x^{8} + 12 x^{5} + 15 x^{3} + 10 x^{2} + 20 x + 17$ | $5$ | $3$ | $15$ | $F_5\times C_3$ | $[5/4]_{4}^{3}$ |
| $11$ | 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.9.4 | $x^{10} - 99$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 1801 | Data not computed | ||||||