Properties

Label 15.1.81383171324...0691.1
Degree $15$
Signature $[1, 7]$
Discriminant $-\,971^{7}$
Root discriminant $24.78$
Ramified prime $971$
Class number $1$
Class group Trivial
Galois group $D_{15}$ (as 15T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![32, 108, 10, 137, 59, 12, 27, 44, -41, 22, 1, -12, 1, 8, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 5*x^14 + 8*x^13 + x^12 - 12*x^11 + x^10 + 22*x^9 - 41*x^8 + 44*x^7 + 27*x^6 + 12*x^5 + 59*x^4 + 137*x^3 + 10*x^2 + 108*x + 32)
 
gp: K = bnfinit(x^15 - 5*x^14 + 8*x^13 + x^12 - 12*x^11 + x^10 + 22*x^9 - 41*x^8 + 44*x^7 + 27*x^6 + 12*x^5 + 59*x^4 + 137*x^3 + 10*x^2 + 108*x + 32, 1)
 

Normalized defining polynomial

\( x^{15} - 5 x^{14} + 8 x^{13} + x^{12} - 12 x^{11} + x^{10} + 22 x^{9} - 41 x^{8} + 44 x^{7} + 27 x^{6} + 12 x^{5} + 59 x^{4} + 137 x^{3} + 10 x^{2} + 108 x + 32 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-813831713247384370691=-\,971^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.78$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $971$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{1376} a^{13} + \frac{27}{688} a^{12} - \frac{27}{1376} a^{11} - \frac{1}{16} a^{10} + \frac{9}{1376} a^{9} - \frac{35}{688} a^{8} + \frac{271}{1376} a^{7} + \frac{137}{688} a^{6} - \frac{121}{1376} a^{5} - \frac{41}{688} a^{4} + \frac{323}{1376} a^{3} - \frac{281}{688} a^{2} - \frac{117}{344} a - \frac{11}{43}$, $\frac{1}{527008} a^{14} - \frac{157}{527008} a^{13} - \frac{1789}{527008} a^{12} + \frac{6127}{527008} a^{11} - \frac{40841}{527008} a^{10} + \frac{48427}{527008} a^{9} + \frac{49785}{527008} a^{8} - \frac{105755}{527008} a^{7} - \frac{101967}{527008} a^{6} - \frac{30107}{527008} a^{5} + \frac{105517}{527008} a^{4} - \frac{34487}{527008} a^{3} + \frac{57853}{263504} a^{2} - \frac{33881}{131752} a + \frac{6191}{16469}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 178567.625718 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_{15}$ (as 15T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 30
The 9 conjugacy class representatives for $D_{15}$
Character table for $D_{15}$

Intermediate fields

3.1.971.1, 5.1.942841.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{3}$ $15$ $15$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{5}$ $15$ $15$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ $15$ $15$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
971Data not computed