Normalized defining polynomial
\( x^{15} - x^{14} + 9 x^{13} - 11 x^{12} + 38 x^{11} + 29 x^{10} - 84 x^{9} - 127 x^{8} + 207 x^{7} - 580 x^{6} + 1017 x^{5} - 944 x^{4} + 704 x^{3} - 69 x^{2} - 81 x - 19 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-80263207751705459602991=-\,1871^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1871$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{979} a^{13} + \frac{241}{979} a^{12} + \frac{258}{979} a^{11} - \frac{40}{979} a^{10} - \frac{70}{979} a^{9} + \frac{464}{979} a^{8} - \frac{79}{979} a^{7} + \frac{459}{979} a^{6} - \frac{148}{979} a^{5} - \frac{447}{979} a^{4} - \frac{283}{979} a^{3} - \frac{454}{979} a^{2} - \frac{309}{979} a + \frac{229}{979}$, $\frac{1}{2015483992184381411} a^{14} - \frac{58360025282675}{2015483992184381411} a^{13} - \frac{113915560995622515}{287926284597768773} a^{12} - \frac{680914275786945232}{2015483992184381411} a^{11} - \frac{648392000620344378}{2015483992184381411} a^{10} + \frac{42902839498257875}{183225817471307401} a^{9} - \frac{688403368860433150}{2015483992184381411} a^{8} - \frac{488426463687566430}{2015483992184381411} a^{7} - \frac{21399392151514571}{49158146150838571} a^{6} - \frac{8490922650572482}{287926284597768773} a^{5} + \frac{914718425808341786}{2015483992184381411} a^{4} + \frac{507494341735822863}{2015483992184381411} a^{3} + \frac{403783029421965548}{2015483992184381411} a^{2} + \frac{57994032889318055}{287926284597768773} a + \frac{592208333310769185}{2015483992184381411}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 198116.498535 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 30 |
| The 9 conjugacy class representatives for $D_{15}$ |
| Character table for $D_{15}$ |
Intermediate fields
| 3.1.1871.1, 5.1.3500641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1871 | Data not computed | ||||||