Properties

Label 15.1.79925419354...6399.1
Degree $15$
Signature $[1, 7]$
Discriminant $-\,7^{9}\cdot 13^{6}\cdot 17^{7}$
Root discriminant $33.64$
Ramified primes $7, 13, 17$
Class number $3$
Class group $[3]$
Galois group 15T79

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3497, -468, -130, -2159, -1686, -1146, -340, -261, -382, 79, -27, -38, 24, 2, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 3*x^14 + 2*x^13 + 24*x^12 - 38*x^11 - 27*x^10 + 79*x^9 - 382*x^8 - 261*x^7 - 340*x^6 - 1146*x^5 - 1686*x^4 - 2159*x^3 - 130*x^2 - 468*x - 3497)
 
gp: K = bnfinit(x^15 - 3*x^14 + 2*x^13 + 24*x^12 - 38*x^11 - 27*x^10 + 79*x^9 - 382*x^8 - 261*x^7 - 340*x^6 - 1146*x^5 - 1686*x^4 - 2159*x^3 - 130*x^2 - 468*x - 3497, 1)
 

Normalized defining polynomial

\( x^{15} - 3 x^{14} + 2 x^{13} + 24 x^{12} - 38 x^{11} - 27 x^{10} + 79 x^{9} - 382 x^{8} - 261 x^{7} - 340 x^{6} - 1146 x^{5} - 1686 x^{4} - 2159 x^{3} - 130 x^{2} - 468 x - 3497 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-79925419354762223186399=-\,7^{9}\cdot 13^{6}\cdot 17^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.64$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 13, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{79220972472802408497322066} a^{14} - \frac{808233281297891322298855}{11317281781828915499617438} a^{13} - \frac{2738921435883754517444824}{39610486236401204248661033} a^{12} - \frac{2772762054389196621176872}{39610486236401204248661033} a^{11} - \frac{10430982874364554929789205}{79220972472802408497322066} a^{10} + \frac{7262101259813953149383778}{39610486236401204248661033} a^{9} - \frac{3058678966528370794599415}{39610486236401204248661033} a^{8} - \frac{12738585435285431646991685}{39610486236401204248661033} a^{7} - \frac{35766249033224517761648953}{79220972472802408497322066} a^{6} - \frac{31602411300414557304467305}{79220972472802408497322066} a^{5} + \frac{38711816474603118698568177}{79220972472802408497322066} a^{4} - \frac{18103775066257380170218416}{39610486236401204248661033} a^{3} + \frac{10387562153040191995417267}{79220972472802408497322066} a^{2} + \frac{338136713202497489331424}{39610486236401204248661033} a + \frac{18754994028681480562022523}{39610486236401204248661033}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 105744.182182 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T79:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 38880
The 45 conjugacy class representatives for 1/2[S(3)^5]D(5)
Character table for 1/2[S(3)^5]D(5) is not computed

Intermediate fields

5.1.14161.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 30 siblings: data not computed
Degree 45 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ $15$ $15$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ R R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ $15$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ $15$ $15$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
7.2.1.1$x^{2} - 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.3.2$x^{4} - 7$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.3.2.3$x^{3} - 52$$3$$1$$2$$C_3$$[\ ]_{3}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.6.4.3$x^{6} + 65 x^{3} + 1352$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
$17$17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.3.0.1$x^{3} - x + 3$$1$$3$$0$$C_3$$[\ ]^{3}$
17.4.3.3$x^{4} + 51$$4$$1$$3$$C_4$$[\ ]_{4}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$