Normalized defining polynomial
\( x^{15} - 5 x^{14} - 15 x^{13} + 15 x^{12} + 525 x^{11} - 1173 x^{10} - 1665 x^{9} + 2265 x^{8} + 55335 x^{7} - 96635 x^{6} + 356773 x^{5} + 792135 x^{4} + 666495 x^{3} + 3088125 x^{2} + 6149115 x + 6561729 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-789540317195400000000000000000=-\,2^{18}\cdot 3^{13}\cdot 5^{17}\cdot 19^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{18} a^{12} + \frac{1}{18} a^{11} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{7}{18} a^{3} - \frac{4}{9} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{54} a^{13} + \frac{1}{54} a^{12} - \frac{1}{18} a^{10} + \frac{7}{18} a^{9} + \frac{1}{9} a^{8} + \frac{1}{3} a^{7} + \frac{4}{9} a^{6} + \frac{7}{18} a^{5} - \frac{11}{54} a^{4} + \frac{5}{27} a^{3} - \frac{1}{18} a^{2} - \frac{1}{6} a$, $\frac{1}{47321387300024813109179683950600222964868742} a^{14} - \frac{68419430601397234172966286240565656082091}{47321387300024813109179683950600222964868742} a^{13} + \frac{39855593740843395683396292602098948158746}{7886897883337468851529947325100037160811457} a^{12} + \frac{5925834498816149905992645737861508036509}{15773795766674937703059894650200074321622914} a^{11} - \frac{3830886676315779904013279785623873151915451}{15773795766674937703059894650200074321622914} a^{10} - \frac{1930145962759601968756189404328196583523109}{7886897883337468851529947325100037160811457} a^{9} + \frac{80966547359317895705875684013727565924511}{2628965961112489617176649108366679053603819} a^{8} + \frac{3182016672851082047402159785103513453000470}{7886897883337468851529947325100037160811457} a^{7} - \frac{3290690806410145373977213596686093632260203}{15773795766674937703059894650200074321622914} a^{6} - \frac{21472371311889616388528107114873096316590601}{47321387300024813109179683950600222964868742} a^{5} - \frac{6897523867529907690499613295632054284189330}{23660693650012406554589841975300111482434371} a^{4} - \frac{1361580260682288702879531324466619839755427}{5257931922224979234353298216733358107207638} a^{3} - \frac{72172282131661957969845519118331367637873}{1752643974074993078117766072244452702402546} a^{2} - \frac{339221275768263530823030060292705473749753}{876321987037496539058883036122226351201273} a - \frac{125911705885537321747510909222595235795064}{292107329012498846352961012040742117067091}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5411274997.421242 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.5700.1, 5.1.4050000.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.15.17.3 | $x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10$ | $15$ | $1$ | $17$ | $F_5 \times S_3$ | $[5/4]_{12}^{2}$ |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |