Normalized defining polynomial
\( x^{15} + 10 x^{13} - 850 x^{12} + 2070 x^{11} + 30349 x^{10} - 183910 x^{9} - 3083670 x^{8} - 13206720 x^{7} + 473102930 x^{6} + 2772478367 x^{5} - 8431068230 x^{4} - 57993380220 x^{3} + 184194250760 x^{2} + 2061802323020 x + 4449241879687 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-776673564181413299414214047596093750000000000=-\,2^{10}\cdot 5^{17}\cdot 7^{13}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $983.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} + \frac{3}{7} a^{6} - \frac{3}{7} a^{5} + \frac{1}{7} a^{4} - \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{8} + \frac{2}{7} a^{6} + \frac{3}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{2} + \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{9} - \frac{3}{7} a^{6} + \frac{2}{7} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} + \frac{1}{7} a^{2} - \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{10} - \frac{3}{7} a^{6} + \frac{3}{7} a^{5} + \frac{1}{7} a^{4} - \frac{2}{7} a^{3} + \frac{2}{7} a^{2} + \frac{1}{7}$, $\frac{1}{77} a^{11} + \frac{4}{77} a^{10} - \frac{1}{77} a^{9} - \frac{3}{77} a^{8} + \frac{3}{77} a^{7} - \frac{8}{77} a^{6} + \frac{12}{77} a^{5} - \frac{34}{77} a^{4} - \frac{24}{77} a^{3} - \frac{20}{77} a^{2} + \frac{4}{77} a + \frac{3}{7}$, $\frac{1}{539} a^{12} + \frac{1}{539} a^{11} + \frac{20}{539} a^{10} + \frac{1}{49} a^{9} + \frac{34}{539} a^{8} + \frac{5}{539} a^{7} + \frac{13}{77} a^{6} + \frac{205}{539} a^{5} + \frac{177}{539} a^{4} - \frac{135}{539} a^{3} - \frac{13}{539} a^{2} - \frac{23}{539} a + \frac{13}{49}$, $\frac{1}{5929} a^{13} + \frac{1}{5929} a^{12} - \frac{2}{539} a^{11} - \frac{3}{5929} a^{10} - \frac{309}{5929} a^{9} - \frac{23}{5929} a^{8} + \frac{39}{847} a^{7} + \frac{772}{5929} a^{6} + \frac{1752}{5929} a^{5} + \frac{1524}{5929} a^{4} - \frac{1546}{5929} a^{3} - \frac{2263}{5929} a^{2} + \frac{2747}{5929} a$, $\frac{1}{15435536596832413081294738156142102696213782506336175281093721367731} a^{14} - \frac{533476601113871537845113315804721096496465105929452936859953728}{15435536596832413081294738156142102696213782506336175281093721367731} a^{13} - \frac{3941353308656749413215778304986145432756913546620717294098416463}{15435536596832413081294738156142102696213782506336175281093721367731} a^{12} - \frac{81654053979876156390583339062375187629603036765576088033530668728}{15435536596832413081294738156142102696213782506336175281093721367731} a^{11} - \frac{378074007307205684747379785638414030018345693314809150037112144255}{15435536596832413081294738156142102696213782506336175281093721367731} a^{10} - \frac{10639471768285036950573501327370374367741894334555409577668375296}{315010950955763532271321186860042912167628214415023985328443293219} a^{9} + \frac{168227740801508033046274289541832465388442363030717126249260479263}{15435536596832413081294738156142102696213782506336175281093721367731} a^{8} - \frac{348580582847789327006419334197695749962410744918911831167150948375}{15435536596832413081294738156142102696213782506336175281093721367731} a^{7} + \frac{7403768918085168443299109930844570357336113022172553733524042131030}{15435536596832413081294738156142102696213782506336175281093721367731} a^{6} - \frac{951386879488779155802465134987611377267720727377471756908741507053}{15435536596832413081294738156142102696213782506336175281093721367731} a^{5} + \frac{981031744936874564308467591714593059862727471918293201345031459946}{15435536596832413081294738156142102696213782506336175281093721367731} a^{4} + \frac{687085440874496961965498036659929630559315157479791119755067155844}{1403230599712037552844976196012918426928525682394197752826701942521} a^{3} - \frac{189206051956606367871823787953767273160456575026444627638914214846}{2205076656690344725899248308020300385173397500905167897299103052533} a^{2} + \frac{3470666246065518093064671809178200933165317772715431306684888402799}{15435536596832413081294738156142102696213782506336175281093721367731} a - \frac{56147890431314523267487219101055912567449460127505221388837474462}{127566418155639777531361472364810766084411425672199795711518358411}$
Class group and class number
$C_{2}\times C_{2}\times C_{30}$, which has order $120$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 817223481214211.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.20300.1, 5.1.5306817753125.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $5$ | 5.15.17.3 | $x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10$ | $15$ | $1$ | $17$ | $F_5 \times S_3$ | $[5/4]_{12}^{2}$ |
| $7$ | 7.5.4.1 | $x^{5} - 7$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 7.10.9.2 | $x^{10} + 14$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $29$ | 29.5.4.1 | $x^{5} - 29$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ |
| 29.10.9.1 | $x^{10} - 29$ | $10$ | $1$ | $9$ | $D_{10}$ | $[\ ]_{10}^{2}$ |