Normalized defining polynomial
\( x^{15} - 3 x^{14} + 3 x^{13} - 37 x^{12} + 33 x^{11} - 915 x^{10} + 2935 x^{9} - 2409 x^{8} + 15195 x^{7} + 81103 x^{6} + 72609 x^{5} + 486393 x^{4} + 747683 x^{3} + 1597287 x^{2} + 1440165 x + 4559605 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-750034830013451205120000000000=-\,2^{18}\cdot 3^{13}\cdot 5^{10}\cdot 179^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 179$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a$, $\frac{1}{24} a^{10} - \frac{1}{12} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{8} a^{2} + \frac{5}{12} a + \frac{1}{24}$, $\frac{1}{120} a^{11} - \frac{1}{60} a^{10} - \frac{1}{8} a^{9} + \frac{1}{20} a^{8} + \frac{1}{20} a^{7} + \frac{1}{10} a^{6} - \frac{3}{20} a^{5} - \frac{1}{5} a^{4} - \frac{1}{8} a^{3} + \frac{11}{60} a^{2} + \frac{5}{24} a - \frac{1}{4}$, $\frac{1}{120} a^{12} + \frac{1}{120} a^{10} - \frac{1}{30} a^{9} - \frac{1}{10} a^{8} - \frac{1}{20} a^{7} - \frac{1}{5} a^{6} - \frac{1}{4} a^{5} + \frac{9}{40} a^{4} + \frac{11}{60} a^{3} + \frac{13}{40} a^{2} + \frac{1}{12} a - \frac{1}{3}$, $\frac{1}{240} a^{13} - \frac{1}{240} a^{12} + \frac{1}{120} a^{10} - \frac{1}{80} a^{9} - \frac{1}{16} a^{8} - \frac{1}{10} a^{7} + \frac{1}{20} a^{6} - \frac{3}{16} a^{5} + \frac{49}{240} a^{4} + \frac{2}{15} a^{3} - \frac{1}{40} a^{2} - \frac{5}{48} a - \frac{7}{16}$, $\frac{1}{3135897888470814093288931654800} a^{14} + \frac{2714633029606382682016373863}{1567948944235407046644465827400} a^{13} - \frac{1318987773682884089740028131}{1045299296156938031096310551600} a^{12} + \frac{2554289393473805579479020283}{1567948944235407046644465827400} a^{11} + \frac{33341139285187477381551027467}{3135897888470814093288931654800} a^{10} - \frac{15845655846066822214927342282}{195993618029425880830558228425} a^{9} - \frac{125757774013993280980965617521}{1045299296156938031096310551600} a^{8} - \frac{1830928455866245231256099309}{130662412019617253887038818950} a^{7} + \frac{3893739790713425557263747217}{1045299296156938031096310551600} a^{6} - \frac{92488463070026165150894650039}{1567948944235407046644465827400} a^{5} - \frac{350600820027335854920656145163}{3135897888470814093288931654800} a^{4} - \frac{185802499324458756151820828469}{522649648078469015548155275800} a^{3} + \frac{353165393510460070648826518577}{3135897888470814093288931654800} a^{2} + \frac{6599893229063937064510257937}{39198723605885176166111645685} a + \frac{56226022264797557077045095211}{627179577694162818657786330960}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1622981675.850239 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.10740.1, 5.1.162000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.14.5 | $x^{10} - 2 x^{5} - 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $179$ | $\Q_{179}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 179.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 179.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 179.4.2.1 | $x^{4} + 2327 x^{2} + 1570009$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 179.4.2.1 | $x^{4} + 2327 x^{2} + 1570009$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |