Normalized defining polynomial
\( x^{15} - 5 x^{14} - 130 x^{13} + 210 x^{12} + 8365 x^{11} + 8327 x^{10} - 246940 x^{9} - 1889940 x^{8} - 6949920 x^{7} + 27969920 x^{6} + 46028768 x^{5} - 1020183680 x^{4} - 438343680 x^{3} - 5489655040 x^{2} + 21933571840 x - 50114084096 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-715448845372327674720280403400000000000000000=-\,2^{18}\cdot 3^{13}\cdot 5^{17}\cdot 11^{12}\cdot 59^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $977.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{5} - \frac{1}{2} a^{3} + \frac{2}{5}$, $\frac{1}{60} a^{6} - \frac{1}{20} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{2}{5} a + \frac{2}{15}$, $\frac{1}{60} a^{7} + \frac{1}{4} a^{3} + \frac{2}{5} a^{2} + \frac{1}{3} a$, $\frac{1}{120} a^{8} - \frac{1}{20} a^{5} + \frac{1}{8} a^{4} + \frac{9}{20} a^{3} - \frac{1}{3} a^{2} - \frac{1}{5}$, $\frac{1}{600} a^{9} + \frac{1}{600} a^{8} - \frac{1}{150} a^{7} - \frac{1}{150} a^{6} - \frac{3}{200} a^{5} + \frac{13}{200} a^{4} + \frac{41}{150} a^{3} + \frac{11}{150} a^{2} - \frac{7}{75} a - \frac{22}{75}$, $\frac{1}{3600} a^{10} - \frac{1}{1200} a^{9} - \frac{1}{450} a^{8} - \frac{1}{200} a^{7} - \frac{23}{3600} a^{6} - \frac{3}{80} a^{5} - \frac{221}{1800} a^{4} + \frac{49}{300} a^{3} + \frac{181}{450} a^{2} + \frac{12}{25} a + \frac{29}{225}$, $\frac{1}{7200} a^{11} - \frac{1}{7200} a^{10} - \frac{1}{3600} a^{9} - \frac{11}{3600} a^{8} + \frac{13}{7200} a^{7} + \frac{11}{7200} a^{6} + \frac{13}{360} a^{5} + \frac{43}{1800} a^{4} - \frac{163}{450} a^{3} + \frac{26}{225} a^{2} - \frac{187}{450} a + \frac{23}{225}$, $\frac{1}{72000} a^{12} + \frac{1}{24000} a^{11} + \frac{1}{12000} a^{10} - \frac{1}{2400} a^{9} + \frac{1}{1600} a^{8} - \frac{59}{24000} a^{7} - \frac{149}{18000} a^{6} + \frac{149}{6000} a^{5} - \frac{29}{150} a^{4} + \frac{137}{300} a^{3} + \frac{129}{500} a^{2} - \frac{317}{750} a + \frac{154}{1125}$, $\frac{1}{432000} a^{13} - \frac{1}{144000} a^{12} + \frac{7}{108000} a^{11} + \frac{7}{216000} a^{10} + \frac{53}{86400} a^{9} - \frac{607}{432000} a^{8} + \frac{1453}{216000} a^{7} - \frac{619}{108000} a^{6} + \frac{94}{3375} a^{5} - \frac{119}{2700} a^{4} - \frac{6559}{27000} a^{3} - \frac{527}{6750} a^{2} + \frac{41}{250} a - \frac{682}{3375}$, $\frac{1}{1701870273918881169128918371807986050352000} a^{14} - \frac{236876877963573791075785670113627699}{567290091306293723042972790602662016784000} a^{13} + \frac{72637843961200825764794751097556813}{850935136959440584564459185903993025176000} a^{12} - \frac{110747173949294023429552670225937031}{6807481095675524676515673487231944201408} a^{11} + \frac{43185002195224617729747574319210806913}{340374054783776233825783674361597210070400} a^{10} - \frac{656871960033959990923206716939112243877}{1701870273918881169128918371807986050352000} a^{9} - \frac{277211050264804316554527599459416294231}{106366892119930073070557398237999128147000} a^{8} + \frac{1319383369244635085307703577340317772887}{425467568479720292282229592951996512588000} a^{7} - \frac{45201750590074880944305364683546716713}{10636689211993007307055739823799912814700} a^{6} + \frac{1048169969912970446442549179282572957771}{42546756847972029228222959295199651258800} a^{5} - \frac{2375084718504424965227152258164690146408}{13295861514991259133819674779749891018375} a^{4} + \frac{6382566413733948527973550240301093165006}{13295861514991259133819674779749891018375} a^{3} + \frac{2155140521568624389434545215645840519953}{8863907676660839422546449853166594012250} a^{2} + \frac{353907366095438466333143913356930612242}{2659172302998251826763934955949978203675} a - \frac{224867534322995091537425753828531324144}{886390767666083942254644985316659401225}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8791846785093799.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.17700.1, 5.1.59296050000.9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.15.17.3 | $x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10$ | $15$ | $1$ | $17$ | $F_5 \times S_3$ | $[5/4]_{12}^{2}$ |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $59$ | $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |