Normalized defining polynomial
\( x^{15} - x^{14} + 115 x^{13} + 233 x^{12} + 3215 x^{11} + 47979 x^{10} - 31523 x^{9} - 60303 x^{8} - 1140151 x^{7} - 60011861 x^{6} - 12647679 x^{5} - 566354805 x^{4} - 760159369 x^{3} - 600364745 x^{2} - 456912753 x - 844596301 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-64007262884567863139459214673592320000000000=-\,2^{23}\cdot 5^{10}\cdot 41^{13}\cdot 61^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $832.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{61} a^{8} + \frac{16}{61} a^{7} + \frac{21}{61} a^{6} - \frac{20}{61} a^{5} + \frac{8}{61} a^{4} - \frac{14}{61} a^{3} + \frac{20}{61} a^{2}$, $\frac{1}{61} a^{9} + \frac{9}{61} a^{7} + \frac{10}{61} a^{6} + \frac{23}{61} a^{5} - \frac{20}{61} a^{4} - \frac{15}{61} a^{2}$, $\frac{1}{122} a^{10} - \frac{1}{122} a^{8} - \frac{14}{61} a^{7} - \frac{2}{61} a^{6} + \frac{29}{61} a^{5} + \frac{21}{61} a^{4} - \frac{29}{61} a^{3} - \frac{17}{122} a^{2} - \frac{1}{2}$, $\frac{1}{7442} a^{11} - \frac{1}{7442} a^{10} - \frac{7}{7442} a^{9} - \frac{11}{7442} a^{8} + \frac{967}{3721} a^{7} + \frac{352}{3721} a^{6} - \frac{1701}{3721} a^{5} + \frac{1721}{3721} a^{4} + \frac{31}{122} a^{3} - \frac{43}{122} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{453962} a^{12} - \frac{1}{453962} a^{11} - \frac{983}{453962} a^{10} + \frac{1331}{453962} a^{9} - \frac{131}{226981} a^{8} + \frac{50494}{226981} a^{7} + \frac{107611}{226981} a^{6} - \frac{42687}{226981} a^{5} - \frac{1131}{7442} a^{4} - \frac{2291}{7442} a^{3} + \frac{37}{122} a^{2} + \frac{53}{122} a$, $\frac{1}{2269810} a^{13} - \frac{1}{1134905} a^{12} - \frac{67}{2269810} a^{11} - \frac{1161}{1134905} a^{10} - \frac{1544}{226981} a^{9} + \frac{2801}{1134905} a^{8} + \frac{49219}{226981} a^{7} + \frac{339227}{1134905} a^{6} - \frac{67093}{453962} a^{5} + \frac{4434}{18605} a^{4} + \frac{4853}{37210} a^{3} + \frac{28}{61} a^{2} - \frac{118}{305} a - \frac{2}{5}$, $\frac{1}{586699757985538999652978838071124519721077370} a^{14} - \frac{7616488546430168470957391008663809627}{293349878992769499826489419035562259860538685} a^{13} + \frac{229031297748131269635756911939649077636}{293349878992769499826489419035562259860538685} a^{12} + \frac{728792759032087077941772808424625454667}{586699757985538999652978838071124519721077370} a^{11} - \frac{268405626793222298116033422043503846896493}{293349878992769499826489419035562259860538685} a^{10} - \frac{244273446637842530702607447631865944819743}{586699757985538999652978838071124519721077370} a^{9} - \frac{343219924406776009289445436239306992231319}{586699757985538999652978838071124519721077370} a^{8} + \frac{68853275245210981719238212873249838114945957}{293349878992769499826489419035562259860538685} a^{7} - \frac{3275049380587661239727324732305420706237643}{9618028819435065568081620296247942946247170} a^{6} - \frac{217172773170994530347567288042894098358331}{4809014409717532784040810148123971473123585} a^{5} - \frac{18650765898656521352068697924997599796964}{78836301798648078426898527018425761854485} a^{4} - \frac{62147741725234810004905229904590680716341}{157672603597296156853797054036851523708970} a^{3} - \frac{496678178046444715871387113680757276968}{1292398390141771777490139787187307571385} a^{2} - \frac{1127279277514347218467414053664400080027}{2584796780283543554980279574374615142770} a - \frac{7937581753638072441514446328448400597}{42373717709566287786561960235649428570}$
Class group and class number
$C_{5}\times C_{15}$, which has order $75$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 529297939111376.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.100040.1, 5.1.5651522000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.19.33 | $x^{10} - 6 x^{4} + 4 x^{2} - 14$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.5.4.2 | $x^{5} + 246$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 41.10.9.4 | $x^{10} - 1912896$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |