Normalized defining polynomial
\( x^{15} - 2 x^{14} + 97 x^{13} + 812 x^{12} - 304 x^{11} + 6410 x^{10} + 49272 x^{9} - 115242 x^{8} - 526083 x^{7} - 248742 x^{6} - 3669519 x^{5} - 17515380 x^{4} - 30340590 x^{3} + 136789686 x^{2} + 504130986 x + 1005343698 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6362366218401470792736132808704000000000=-\,2^{23}\cdot 3^{13}\cdot 5^{9}\cdot 37^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $450.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{10} a^{11} + \frac{1}{5} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{7} - \frac{1}{10} a^{5} + \frac{2}{5} a^{3} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{10} a^{12} - \frac{3}{10} a^{9} - \frac{1}{10} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{3}{10} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{100} a^{13} - \frac{1}{25} a^{11} + \frac{1}{25} a^{10} - \frac{3}{25} a^{9} - \frac{2}{25} a^{8} + \frac{19}{50} a^{7} + \frac{21}{50} a^{6} - \frac{17}{100} a^{5} + \frac{8}{25} a^{4} + \frac{8}{25} a^{3} - \frac{12}{25} a^{2} + \frac{1}{50} a + \frac{19}{50}$, $\frac{1}{1061788634994238471810633773229611793663825219127475100} a^{14} - \frac{2259319652642578239824149552549964216120622730376183}{530894317497119235905316886614805896831912609563737550} a^{13} - \frac{5343256046321031116153565111042797931996943988652071}{265447158748559617952658443307402948415956304781868775} a^{12} + \frac{13588295824015336992682280307428366370350800175798039}{530894317497119235905316886614805896831912609563737550} a^{11} - \frac{107939275242647936020727055140214500368214739320882253}{530894317497119235905316886614805896831912609563737550} a^{10} + \frac{17695999675270371313984966242997480747432259450774391}{265447158748559617952658443307402948415956304781868775} a^{9} - \frac{69443369734876804148226238660050857790868907189921677}{530894317497119235905316886614805896831912609563737550} a^{8} - \frac{103603368214291354147253892673278433457670988258590984}{265447158748559617952658443307402948415956304781868775} a^{7} + \frac{365213670497502443949365468538930674345101550587832041}{1061788634994238471810633773229611793663825219127475100} a^{6} + \frac{249962379580561565960536963934245539981792265467781567}{530894317497119235905316886614805896831912609563737550} a^{5} + \frac{214796823193950249170515346774430518980389493423392}{10617886349942384718106337732296117936638252191274751} a^{4} - \frac{15536940211092571239741751667466133876713865831365829}{53089431749711923590531688661480589683191260956373755} a^{3} + \frac{5057430777784328908983298845805520499725688296987663}{106178863499423847181063377322961179366382521912747510} a^{2} - \frac{255627425620549280524962300765209582758199225176268637}{530894317497119235905316886614805896831912609563737550} a - \frac{423149727156509976039223011501495408695026778639037}{2628189690579798197551073696112900479365904007741275}$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33354685093488.18 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.888.1, 5.1.303614082000.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.19.1 | $x^{10} - 2$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $37$ | 37.5.4.1 | $x^{5} - 37$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 37.10.9.2 | $x^{10} + 74$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |