Normalized defining polynomial
\( x^{15} - x^{14} - 4 x^{13} + 47 x^{12} + 69 x^{11} - 47 x^{10} - 3181 x^{9} + 4820 x^{8} + 33564 x^{7} - 55285 x^{6} - 19022 x^{5} + 11076 x^{4} + 42632 x^{3} + 10000 x^{2} - 34528 x - 21568 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6030617589845994121689520487=-\,23^{7}\cdot 191^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 191$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{6} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{12} a^{8} - \frac{1}{4} a^{7} + \frac{5}{12} a^{6} + \frac{1}{4} a^{5} - \frac{1}{3} a^{3} - \frac{1}{12} a^{2} - \frac{1}{6} a$, $\frac{1}{6696} a^{12} + \frac{79}{6696} a^{11} + \frac{67}{837} a^{10} - \frac{115}{2232} a^{9} - \frac{479}{6696} a^{8} + \frac{1129}{6696} a^{7} + \frac{2915}{6696} a^{6} + \frac{23}{558} a^{5} - \frac{5}{54} a^{4} - \frac{1681}{6696} a^{3} - \frac{109}{1116} a^{2} - \frac{67}{837} a - \frac{98}{837}$, $\frac{1}{13392} a^{13} - \frac{1}{13392} a^{12} - \frac{17}{1116} a^{11} - \frac{817}{13392} a^{10} - \frac{779}{13392} a^{9} - \frac{2959}{13392} a^{8} + \frac{625}{4464} a^{7} - \frac{199}{3348} a^{6} + \frac{1579}{3348} a^{5} - \frac{767}{4464} a^{4} + \frac{2185}{6696} a^{3} - \frac{1283}{3348} a^{2} - \frac{13}{558} a + \frac{14}{837}$, $\frac{1}{4446374650270322252232153888} a^{14} - \frac{66416770678229215641961}{4446374650270322252232153888} a^{13} - \frac{3532961728603864790317}{61755203475976697947668804} a^{12} + \frac{113076294412126051931698883}{4446374650270322252232153888} a^{11} + \frac{342237601627389775911683557}{4446374650270322252232153888} a^{10} + \frac{16850398100573844867730613}{4446374650270322252232153888} a^{9} - \frac{66280841028162562220564641}{494041627807813583581350432} a^{8} + \frac{127464922865202533075049637}{555796831283790281529019236} a^{7} - \frac{13426645987472396425057919}{277898415641895140764509618} a^{6} + \frac{615785415077290512858298817}{1482124883423440750744051296} a^{5} - \frac{666349573188908392325901155}{2223187325135161126116076944} a^{4} + \frac{51155978157667185198882217}{277898415641895140764509618} a^{3} - \frac{39328445759810101738632623}{185265610427930093843006412} a^{2} + \frac{92215175997906627252156059}{277898415641895140764509618} a + \frac{9250046477046870623376583}{46316402606982523460751603}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34216122.0376 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:S_3$ (as 15T14):
| A solvable group of order 150 |
| The 13 conjugacy class representatives for $(C_5^2 : C_3):C_2$ |
| Character table for $(C_5^2 : C_3):C_2$ |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.10.5.2 | $x^{10} - 279841 x^{2} + 12872686$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $191$ | $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 191.2.0.1 | $x^{2} - x + 19$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 191.2.0.1 | $x^{2} - x + 19$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 191.10.8.3 | $x^{10} + 7067 x^{5} + 13169641$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |