Normalized defining polynomial
\( x^{15} + 125 x^{13} - 550 x^{12} + 6250 x^{11} - 52732 x^{10} + 277250 x^{9} - 2346000 x^{8} + 18512525 x^{7} - 38235000 x^{6} + 207170233 x^{5} + 472707250 x^{4} + 3376407000 x^{3} - 1867556300 x^{2} + 43463765000 x + 28154663716 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-534359547919362296589172482600000000000000000=-\,2^{18}\cdot 3^{12}\cdot 5^{17}\cdot 7^{13}\cdot 139^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $959.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} + \frac{1}{5}$, $\frac{1}{30} a^{6} - \frac{1}{10} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{2}{15} a - \frac{4}{15}$, $\frac{1}{30} a^{7} + \frac{1}{15} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{2}{15} a^{2} + \frac{1}{3} a + \frac{2}{5}$, $\frac{1}{30} a^{8} + \frac{1}{15} a^{5} - \frac{1}{2} a^{4} - \frac{7}{15} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{4}{15}$, $\frac{1}{150} a^{9} - \frac{1}{150} a^{8} + \frac{1}{150} a^{7} - \frac{1}{150} a^{6} + \frac{1}{25} a^{5} + \frac{1}{25} a^{4} + \frac{22}{75} a^{3} + \frac{28}{75} a^{2} - \frac{1}{25} a - \frac{32}{75}$, $\frac{1}{4200} a^{10} - \frac{3}{1400} a^{9} - \frac{1}{75} a^{8} + \frac{13}{2100} a^{7} + \frac{23}{1400} a^{6} - \frac{99}{1400} a^{5} - \frac{377}{2100} a^{4} + \frac{86}{175} a^{3} - \frac{8}{25} a^{2} + \frac{41}{1050} a + \frac{433}{1050}$, $\frac{1}{4200} a^{11} + \frac{1}{1400} a^{9} - \frac{29}{2100} a^{8} + \frac{23}{4200} a^{7} + \frac{11}{1050} a^{6} - \frac{69}{1400} a^{5} - \frac{191}{2100} a^{4} + \frac{19}{525} a^{3} - \frac{253}{1050} a^{2} + \frac{191}{525} a - \frac{23}{1050}$, $\frac{1}{63000} a^{12} - \frac{1}{21000} a^{11} + \frac{1}{63000} a^{10} + \frac{1}{360} a^{9} + \frac{1}{280} a^{8} + \frac{47}{3000} a^{7} + \frac{139}{63000} a^{6} - \frac{203}{3000} a^{5} - \frac{379}{1260} a^{4} + \frac{191}{630} a^{3} - \frac{57}{250} a^{2} + \frac{6673}{15750} a - \frac{6341}{15750}$, $\frac{1}{126000} a^{13} - \frac{1}{15750} a^{11} - \frac{1}{63000} a^{10} - \frac{1}{840} a^{9} + \frac{277}{21000} a^{8} + \frac{1}{1260} a^{7} - \frac{191}{21000} a^{6} + \frac{343}{18000} a^{5} + \frac{817}{2520} a^{4} + \frac{1289}{5250} a^{3} - \frac{146}{315} a^{2} + \frac{3989}{15750} a + \frac{19}{10500}$, $\frac{1}{1342870387710694744401081568901882180803842000} a^{14} + \frac{3425714817528088894333203667191709288511}{1342870387710694744401081568901882180803842000} a^{13} + \frac{29455551728015979866512179270727170493}{15986552234651127909536685344070025961950500} a^{12} + \frac{3195138131995097478886791623755519732193}{44762346257023158146702718963396072693461400} a^{11} - \frac{3423081223356285640600769256573321216409}{167858798463836843050135196112735272600480250} a^{10} - \frac{756458976085268041392421177899977800568617}{335717596927673686100270392225470545200960500} a^{9} + \frac{1885202437273636612803820662172389703486781}{671435193855347372200540784450941090401921000} a^{8} - \frac{5466110852145556846588612205292720158901743}{671435193855347372200540784450941090401921000} a^{7} - \frac{484276573982472430467856278971245884076637}{29841564171348772097801812642264048462307600} a^{6} + \frac{17787388447059270660190197887945087303363383}{191838626815813534914440224128840311543406000} a^{5} + \frac{33980314647038434061361801775722524143624967}{74603910428371930244504531605660121155769000} a^{4} - \frac{49332401038145221260925067712837346458354503}{167858798463836843050135196112735272600480250} a^{3} - \frac{15923255389406956035178030617183010643379427}{55952932821278947683378398704245090866826750} a^{2} - \frac{6426035360974693576677502123378141693957309}{67143519385534737220054078445094109040192100} a - \frac{12367810967470303927147888310702397794597593}{335717596927673686100270392225470545200960500}$
Class group and class number
$C_{15}$, which has order $15$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10320283429411996 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.97300.3, 5.1.9724050000.9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.14.5 | $x^{10} - 2 x^{5} - 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.15.17.3 | $x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10$ | $15$ | $1$ | $17$ | $F_5 \times S_3$ | $[5/4]_{12}^{2}$ |
| $7$ | 7.5.4.1 | $x^{5} - 7$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 7.10.9.1 | $x^{10} - 7$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $139$ | $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.1.2 | $x^{2} + 556$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.4.2.1 | $x^{4} + 417 x^{2} + 77284$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 139.4.2.1 | $x^{4} + 417 x^{2} + 77284$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |