Normalized defining polynomial
\( x^{15} - 15 x^{13} - 30 x^{12} + 75 x^{11} + 2880 x^{10} - 36275 x^{9} - 455490 x^{8} + 794220 x^{7} + 7999460 x^{6} - 29685606 x^{5} - 73095900 x^{4} + 981089960 x^{3} + 5043879720 x^{2} + 10724525400 x + 9378358624 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-505587397847240362501152000000000000000000=-\,2^{23}\cdot 3^{20}\cdot 5^{18}\cdot 1459^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $602.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 1459$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4}$, $\frac{1}{232} a^{13} - \frac{11}{232} a^{12} + \frac{1}{116} a^{11} - \frac{5}{116} a^{10} - \frac{23}{232} a^{9} - \frac{3}{232} a^{8} + \frac{11}{116} a^{7} + \frac{27}{116} a^{6} + \frac{51}{116} a^{5} + \frac{45}{116} a^{4} + \frac{9}{29} a^{3} + \frac{6}{29} a^{2} + \frac{14}{29} a + \frac{1}{29}$, $\frac{1}{1727940255898401644064098811719586633598238021575592608} a^{14} - \frac{3623775933345639144548097813792743792117449515388743}{1727940255898401644064098811719586633598238021575592608} a^{13} - \frac{31356880527597643423026414321667672181207934607526911}{863970127949200822032049405859793316799119010787796304} a^{12} - \frac{7042210769134081889793161201332058133964141655699459}{431985063974600411016024702929896658399559505393898152} a^{11} + \frac{69198445515308058347528147902855385387848563994208935}{1727940255898401644064098811719586633598238021575592608} a^{10} - \frac{203424244187300526726741746159440082706038401182060601}{1727940255898401644064098811719586633598238021575592608} a^{9} - \frac{1447797677628758465206891052732994738409156465289357}{14896036688779324517793955273444712358605500185996488} a^{8} - \frac{72209588145321615928293779166420895175915076312637483}{863970127949200822032049405859793316799119010787796304} a^{7} - \frac{214997810527252832341639966971189188027026187767720489}{863970127949200822032049405859793316799119010787796304} a^{6} - \frac{99845229466112591568446356849642612412304557222516947}{863970127949200822032049405859793316799119010787796304} a^{5} - \frac{91851197080080520264075985525591265589755750384712775}{431985063974600411016024702929896658399559505393898152} a^{4} + \frac{97451755560155787787247901522835941685539578218717171}{215992531987300205508012351464948329199779752696949076} a^{3} - \frac{777154246617495349522554086208633751213075157114033}{3724009172194831129448488818361178089651375046499122} a^{2} + \frac{100600984274871558548308496156226008055914564849503793}{215992531987300205508012351464948329199779752696949076} a + \frac{5470298890105622659306762068058021726754503122590205}{53998132996825051377003087866237082299944938174237269}$
Class group and class number
$C_{15}$, which has order $15$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2356551602180000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1500 |
| The 40 conjugacy class representatives for [5^3:2]S(3) |
| Character table for [5^3:2]S(3) is not computed |
Intermediate fields
| 3.1.648.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.5.6.2 | $x^{5} + 15 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ |
| 5.10.12.13 | $x^{10} + 15 x^{7} + 10 x^{5} + 100 x^{4} + 75 x^{2} + 25$ | $5$ | $2$ | $12$ | $D_5^2$ | $[3/2, 3/2]_{2}^{2}$ | |
| 1459 | Data not computed | ||||||