Normalized defining polynomial
\( x^{15} - 5 x^{14} + 11 x^{13} - 68 x^{11} + 200 x^{10} - 325 x^{9} + 349 x^{8} - 255 x^{7} + 96 x^{6} + 136 x^{5} - 232 x^{4} + 16 x^{3} + 64 x^{2} + 128 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5013951292733215829219=-\,1259^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1259$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{4} a^{7} + \frac{3}{16} a^{5} + \frac{1}{16} a^{4} + \frac{5}{16} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{64} a^{12} + \frac{1}{64} a^{11} + \frac{5}{64} a^{10} - \frac{3}{32} a^{9} + \frac{1}{16} a^{8} - \frac{1}{4} a^{7} - \frac{5}{64} a^{6} - \frac{1}{64} a^{5} - \frac{9}{64} a^{4} - \frac{9}{32} a^{3} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{512} a^{13} - \frac{1}{512} a^{12} - \frac{13}{512} a^{11} - \frac{1}{16} a^{10} - \frac{1}{8} a^{9} - \frac{7}{64} a^{8} - \frac{37}{512} a^{7} + \frac{41}{512} a^{6} - \frac{119}{512} a^{5} + \frac{5}{32} a^{4} + \frac{37}{128} a^{3} + \frac{21}{64} a^{2} - \frac{7}{16} a - \frac{3}{16}$, $\frac{1}{65646592} a^{14} - \frac{22287}{65646592} a^{13} + \frac{3119}{1396736} a^{12} - \frac{4971}{698368} a^{11} + \frac{19359}{186496} a^{10} - \frac{160399}{8205824} a^{9} - \frac{5212821}{65646592} a^{8} + \frac{6844975}{65646592} a^{7} - \frac{2185429}{65646592} a^{6} - \frac{149385}{698368} a^{5} + \frac{2149}{16411648} a^{4} - \frac{431579}{4102912} a^{3} - \frac{1295313}{4102912} a^{2} - \frac{910825}{2051456} a + \frac{487085}{1025728}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 487363.237089 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 30 |
| The 9 conjugacy class representatives for $D_{15}$ |
| Character table for $D_{15}$ |
Intermediate fields
| 3.1.1259.1, 5.1.1585081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1259 | Data not computed | ||||||