Normalized defining polynomial
\( x^{15} - 5 x^{13} - 10 x^{12} + 10 x^{11} - 38 x^{10} + 30 x^{9} - 450 x^{8} - 4795 x^{7} - 560 x^{6} + 1367 x^{5} - 13630 x^{4} + 12520 x^{3} - 37650 x^{2} + 3820 x - 24862 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4962305746407473152000000000=-\,2^{23}\cdot 5^{9}\cdot 13^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{26} a^{10} + \frac{11}{26} a^{9} + \frac{2}{13} a^{7} + \frac{7}{26} a^{6} - \frac{1}{26} a^{5} + \frac{2}{13} a^{4} - \frac{2}{13} a^{3} - \frac{1}{13} a + \frac{4}{13}$, $\frac{1}{26} a^{11} + \frac{9}{26} a^{9} + \frac{2}{13} a^{8} - \frac{11}{26} a^{7} - \frac{11}{26} a^{5} + \frac{2}{13} a^{4} - \frac{4}{13} a^{3} - \frac{1}{13} a^{2} + \frac{2}{13} a - \frac{5}{13}$, $\frac{1}{4030} a^{12} - \frac{1}{2015} a^{11} + \frac{11}{2015} a^{10} + \frac{1637}{4030} a^{9} + \frac{1983}{4030} a^{8} - \frac{262}{2015} a^{7} - \frac{142}{2015} a^{6} - \frac{1}{10} a^{5} + \frac{538}{2015} a^{4} - \frac{227}{2015} a^{3} - \frac{919}{2015} a^{2} + \frac{43}{2015} a + \frac{28}{65}$, $\frac{1}{4030} a^{13} + \frac{9}{2015} a^{11} - \frac{12}{2015} a^{10} - \frac{704}{2015} a^{9} - \frac{294}{2015} a^{8} - \frac{46}{2015} a^{7} - \frac{408}{2015} a^{6} + \frac{395}{806} a^{5} - \frac{42}{155} a^{4} + \frac{22}{2015} a^{3} + \frac{44}{403} a^{2} + \frac{644}{2015} a + \frac{31}{65}$, $\frac{1}{37069325189501114284580} a^{14} - \frac{1224076015350913689}{37069325189501114284580} a^{13} + \frac{384655082837912213}{18534662594750557142290} a^{12} + \frac{323157236927455684249}{18534662594750557142290} a^{11} + \frac{68696078829378789626}{9267331297375278571145} a^{10} + \frac{1035923308686609121989}{3706932518950111428458} a^{9} - \frac{3704149316201931263643}{18534662594750557142290} a^{8} - \frac{278833608242392124165}{3706932518950111428458} a^{7} - \frac{1107836254625249996753}{37069325189501114284580} a^{6} + \frac{2064766165551803202089}{37069325189501114284580} a^{5} + \frac{875360065223750661189}{3706932518950111428458} a^{4} - \frac{2525054185709318169302}{9267331297375278571145} a^{3} + \frac{2084019527881995964756}{9267331297375278571145} a^{2} + \frac{616176631796131621923}{1425743276519273626330} a - \frac{29142451077064474083}{119578468353229400918}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 228104823.0554214 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.104.1, 5.1.57122000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.19.49 | $x^{10} - 6$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| $13$ | 13.5.4.1 | $x^{5} - 13$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 13.10.9.2 | $x^{10} + 26$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |