Normalized defining polynomial
\( x^{15} - 5 x^{14} - 615 x^{13} - 1345 x^{12} + 178955 x^{11} + 1097623 x^{10} - 49110085 x^{9} + 112654015 x^{8} + 11648990810 x^{7} - 91266360040 x^{6} - 1546253890847 x^{5} + 9883081080065 x^{4} + 92007754171735 x^{3} - 302495276454075 x^{2} - 908213995898190 x + 8093159542525366 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4813277369084810191333564808000000000000000000=-\,2^{21}\cdot 5^{18}\cdot 11^{12}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1110.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6513443993164438524114321045356501189774128151098661952477764624209994219215324596960911792575976} a^{14} - \frac{583236690576378742549179541328765317560184584473221016546179998704893293293519587708676211024243}{3256721996582219262057160522678250594887064075549330976238882312104997109607662298480455896287988} a^{13} - \frac{602812460048051483327957151173979719051620010237464138469678674487621892062600537694333533476617}{6513443993164438524114321045356501189774128151098661952477764624209994219215324596960911792575976} a^{12} - \frac{13563371714624339113466395294178300178678583222985508537299857932645618856645234176701639119046}{62629269165042678116483856205350972978597386068256364927670813694326867492455044201547228774769} a^{11} - \frac{2935198413267536636500375941641559734481246498880158018420231656685385845793067993472097439877013}{6513443993164438524114321045356501189774128151098661952477764624209994219215324596960911792575976} a^{10} + \frac{16935474202776690268891043217491968293656223222731769063636030261527735765648191342050567734377}{125258538330085356232967712410701945957194772136512729855341627388653734984910088403094457549538} a^{9} + \frac{436221863661988814030413448662680943472268628846326102980003877450526440092049487963866942120095}{6513443993164438524114321045356501189774128151098661952477764624209994219215324596960911792575976} a^{8} - \frac{404068958266819090381257502057693938638603647809092682453761553925513553882580023756265316080739}{814180499145554815514290130669562648721766018887332744059720578026249277401915574620113974071997} a^{7} - \frac{1334167704889444378423050277498113217310561351258294853597663559417766304915679180688777387410523}{3256721996582219262057160522678250594887064075549330976238882312104997109607662298480455896287988} a^{6} - \frac{154177083067426146567556613748867747472786890902415970832185682350710213827857971874912545248425}{3256721996582219262057160522678250594887064075549330976238882312104997109607662298480455896287988} a^{5} - \frac{1791063794777651769978330820063662528324736750532544904781593732061060003272521130727317213835269}{6513443993164438524114321045356501189774128151098661952477764624209994219215324596960911792575976} a^{4} + \frac{1069574385686242442571600704949491531543092626697210015498416439872038903721082472189169695918367}{3256721996582219262057160522678250594887064075549330976238882312104997109607662298480455896287988} a^{3} - \frac{2508253385321251481698443078253542743384299752457385962834743295147250736115818145059283205343423}{6513443993164438524114321045356501189774128151098661952477764624209994219215324596960911792575976} a^{2} - \frac{603290195713207044042926830511029248325418426070653444846962807801334262966309444608805725596915}{1628360998291109631028580261339125297443532037774665488119441156052498554803831149240227948143994} a - \frac{1470895949561606348874035559514915187734303911263876796620492135278024146046088721832558081066609}{3256721996582219262057160522678250594887064075549330976238882312104997109607662298480455896287988}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21001356499000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 750 |
| The 35 conjugacy class representatives for 1/2[5^3:2]S(3) |
| Character table for 1/2[5^3:2]S(3) is not computed |
Intermediate fields
| 3.1.200.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.10.15.9 | $x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.10.8.5 | $x^{10} - 61 x^{5} + 59536$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |