Normalized defining polynomial
\( x^{15} + 155 x^{13} - 3120 x^{12} - 43740 x^{11} - 4322064 x^{10} + 29553325 x^{9} + 336699800 x^{8} + 5895045565 x^{7} - 7268082900 x^{6} + 689232153107 x^{5} - 7105193819530 x^{4} - 16823896467110 x^{3} + 241484266064340 x^{2} - 2845372937103000 x + 25424027623886288 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4813277369084810191333564808000000000000000000=-\,2^{21}\cdot 5^{18}\cdot 11^{12}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1110.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{424} a^{13} + \frac{1}{53} a^{12} + \frac{47}{424} a^{11} + \frac{15}{53} a^{10} + \frac{2}{53} a^{9} + \frac{4}{53} a^{8} + \frac{149}{424} a^{7} + \frac{7}{53} a^{6} - \frac{15}{424} a^{5} + \frac{5}{106} a^{4} + \frac{3}{8} a^{3} - \frac{73}{212} a^{2} + \frac{15}{212} a + \frac{9}{106}$, $\frac{1}{771704141712442265672300524691001320632541507784577763979500273364688672494400164718600436415009181069216} a^{14} - \frac{86075953606646148989491638113810625875633785693481120936823826844460925990204011395622299898541371975}{385852070856221132836150262345500660316270753892288881989750136682344336247200082359300218207504590534608} a^{13} + \frac{125077608182346363875670768623871384559171415004313521587539036904117629809514620154023043568612027798751}{771704141712442265672300524691001320632541507784577763979500273364688672494400164718600436415009181069216} a^{12} + \frac{186070000445047595486057496704543235009462390991050018177518363451763699781707291417183493127416547689743}{385852070856221132836150262345500660316270753892288881989750136682344336247200082359300218207504590534608} a^{11} - \frac{3590565322206642997129977969416892213867686625181825731450959617257624087933238315869923029681511256240}{24115754428513820802259391396593791269766922118268055124359383542646521015450005147456263637969036908413} a^{10} + \frac{14059985158500735466424921761718686419506780656000711099346816092508159983028604195415742237856285800945}{48231508857027641604518782793187582539533844236536110248718767085293042030900010294912527275938073816826} a^{9} - \frac{5232934328284733087381841164444614173731919179602755865151816699372677146671322244539269586749434027123}{771704141712442265672300524691001320632541507784577763979500273364688672494400164718600436415009181069216} a^{8} - \frac{171480400745757997548847628703771960434331137800055143317907634183672230480880990168893341906607123312479}{385852070856221132836150262345500660316270753892288881989750136682344336247200082359300218207504590534608} a^{7} - \frac{82045111467235317624371186632400029935615443979678746853022251254223758439225256337335119413564814098143}{771704141712442265672300524691001320632541507784577763979500273364688672494400164718600436415009181069216} a^{6} - \frac{71378505943132799009138643125047018125976587368859895060468905966724866766446486752180914639035556189089}{385852070856221132836150262345500660316270753892288881989750136682344336247200082359300218207504590534608} a^{5} + \frac{203407461199412531568001079283725380217127043255480410356910821644448408909562812766498507904233030563887}{771704141712442265672300524691001320632541507784577763979500273364688672494400164718600436415009181069216} a^{4} + \frac{59667906594739088859135202483913775513638728207134821044189228214137650071517411011514448169333651303105}{192926035428110566418075131172750330158135376946144440994875068341172168123600041179650109103752295267304} a^{3} + \frac{100033432948641325679052036075242985345663606855370736588247673388138883794750950578179952710383618944273}{385852070856221132836150262345500660316270753892288881989750136682344336247200082359300218207504590534608} a^{2} + \frac{36878655143608514574747055385298736573086547308643167411171154896659711256734436976455975296098391432619}{96463017714055283209037565586375165079067688473072220497437534170586084061800020589825054551876147633652} a + \frac{25180025418102298756576877852086098522529149834742441824770997209292518006810751720522374401364367558967}{96463017714055283209037565586375165079067688473072220497437534170586084061800020589825054551876147633652}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17603642299200000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 750 |
| The 35 conjugacy class representatives for 1/2[5^3:2]S(3) |
| Character table for 1/2[5^3:2]S(3) is not computed |
Intermediate fields
| 3.1.200.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.10.15.9 | $x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.10.8.5 | $x^{10} - 61 x^{5} + 59536$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |