Properties

Label 15.1.44543599279432079.1
Degree $15$
Signature $[1, 7]$
Discriminant $-\,239^{7}$
Root discriminant $12.88$
Ramified prime $239$
Class number $1$
Class group Trivial
Galois group $D_{15}$ (as 15T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 6, -2, -8, -4, 27, -13, -15, 4, 20, -13, -5, 4, 4, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 4*x^14 + 4*x^13 + 4*x^12 - 5*x^11 - 13*x^10 + 20*x^9 + 4*x^8 - 15*x^7 - 13*x^6 + 27*x^5 - 4*x^4 - 8*x^3 - 2*x^2 + 6*x - 1)
 
gp: K = bnfinit(x^15 - 4*x^14 + 4*x^13 + 4*x^12 - 5*x^11 - 13*x^10 + 20*x^9 + 4*x^8 - 15*x^7 - 13*x^6 + 27*x^5 - 4*x^4 - 8*x^3 - 2*x^2 + 6*x - 1, 1)
 

Normalized defining polynomial

\( x^{15} - 4 x^{14} + 4 x^{13} + 4 x^{12} - 5 x^{11} - 13 x^{10} + 20 x^{9} + 4 x^{8} - 15 x^{7} - 13 x^{6} + 27 x^{5} - 4 x^{4} - 8 x^{3} - 2 x^{2} + 6 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-44543599279432079=-\,239^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12.88$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $239$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
$|\Aut(K/\Q)|$:  $1$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{34333} a^{14} - \frac{6031}{34333} a^{13} - \frac{9806}{34333} a^{12} + \frac{13673}{34333} a^{11} - \frac{7976}{34333} a^{10} + \frac{5139}{34333} a^{9} - \frac{4367}{34333} a^{8} - \frac{13498}{34333} a^{7} - \frac{16779}{34333} a^{6} + \frac{16335}{34333} a^{5} + \frac{16026}{34333} a^{4} - \frac{9977}{34333} a^{3} + \frac{752}{1807} a^{2} - \frac{6614}{34333} a + \frac{1971}{34333}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 124.657592501 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_{15}$ (as 15T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 30
The 9 conjugacy class representatives for $D_{15}$
Character table for $D_{15}$

Intermediate fields

3.1.239.1, 5.1.57121.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $15$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{3}$ $15$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ $15$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{5}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ $15$ $15$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
239Data not computed