Normalized defining polynomial
\( x^{15} - 5 x^{14} - 15 x^{13} - 25 x^{12} + 565 x^{11} + 794 x^{10} - 1125 x^{9} - 29310 x^{8} - 139405 x^{7} + 309215 x^{6} + 186450 x^{5} - 3565970 x^{4} + 4878805 x^{3} - 4003430 x^{2} - 19039100 x - 9329068 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-37362650893059880826731834411621093750000000000=-\,2^{10}\cdot 5^{28}\cdot 11^{12}\cdot 199^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1273.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{50} a^{10} - \frac{1}{5} a^{9} - \frac{1}{2} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{25} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{2} a^{2} - \frac{1}{5} a - \frac{4}{25}$, $\frac{1}{50} a^{11} - \frac{1}{2} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{25} a^{6} + \frac{1}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{5} a^{2} - \frac{4}{25} a + \frac{2}{5}$, $\frac{1}{50} a^{12} - \frac{1}{5} a^{9} - \frac{3}{10} a^{8} - \frac{1}{25} a^{7} + \frac{1}{5} a^{5} - \frac{1}{2} a^{4} - \frac{1}{5} a^{3} + \frac{17}{50} a^{2} + \frac{2}{5} a$, $\frac{1}{50} a^{13} - \frac{3}{10} a^{9} - \frac{1}{25} a^{8} + \frac{1}{5} a^{6} + \frac{1}{10} a^{5} - \frac{1}{5} a^{4} + \frac{17}{50} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{109172216066820949342629470089518469750} a^{14} - \frac{326950552404206509285616900125922038}{54586108033410474671314735044759234875} a^{13} - \frac{4618958843428505038052122037676467}{54586108033410474671314735044759234875} a^{12} - \frac{158633061879951798717470597964186278}{54586108033410474671314735044759234875} a^{11} - \frac{51884796177463037295872398763092127}{54586108033410474671314735044759234875} a^{10} + \frac{19944518285608887765347826278682706584}{54586108033410474671314735044759234875} a^{9} + \frac{21757500033575109725550752943543421847}{109172216066820949342629470089518469750} a^{8} + \frac{19357860383352485880681193716172603529}{54586108033410474671314735044759234875} a^{7} - \frac{15592771926391248949465650441349649183}{109172216066820949342629470089518469750} a^{6} + \frac{15428148364639962145854904145857204524}{54586108033410474671314735044759234875} a^{5} - \frac{6772419167588157852264970728678819413}{109172216066820949342629470089518469750} a^{4} - \frac{20899654279430970735306831015283058511}{54586108033410474671314735044759234875} a^{3} - \frac{12290862627021675957194846695782160763}{109172216066820949342629470089518469750} a^{2} - \frac{24952631780189691057737960492482105236}{54586108033410474671314735044759234875} a - \frac{16726972846256882824668884069056099139}{54586108033410474671314735044759234875}$
Class group and class number
$C_{5}\times C_{30}$, which has order $150$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3549486217575014.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.3980.1, 5.1.28595703125.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | $15$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $5$ | 5.5.9.2 | $x^{5} + 55$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ |
| 5.10.19.5 | $x^{10} + 55$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ | |
| $11$ | 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.8.4 | $x^{10} - 781 x^{5} + 290521$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $199$ | $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.2.1.2 | $x^{2} + 398$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.4.2.1 | $x^{4} + 2189 x^{2} + 1425636$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 199.4.2.1 | $x^{4} + 2189 x^{2} + 1425636$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |