# Properties

 Label 15.1.3703260525677583.1 Degree $15$ Signature $[1, 7]$ Discriminant $-\,3\cdot 13^{3}\cdot 561866260913$ Root discriminant $10.91$ Ramified primes $3, 13, 561866260913$ Class number $1$ Class group Trivial Galois group 15T104

# Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, -3, -5, -4, 3, -3, 6, 2, -3, 4, -5, -1, 1, -2, 1]);

sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 2*x^14 + x^13 - x^12 - 5*x^11 + 4*x^10 - 3*x^9 + 2*x^8 + 6*x^7 - 3*x^6 + 3*x^5 - 4*x^4 - 5*x^3 - 3*x^2 - 3*x - 1)

gp: K = bnfinit(x^15 - 2*x^14 + x^13 - x^12 - 5*x^11 + 4*x^10 - 3*x^9 + 2*x^8 + 6*x^7 - 3*x^6 + 3*x^5 - 4*x^4 - 5*x^3 - 3*x^2 - 3*x - 1, 1)

## Normalizeddefining polynomial

$$x^{15} - 2 x^{14} + x^{13} - x^{12} - 5 x^{11} + 4 x^{10} - 3 x^{9} + 2 x^{8} + 6 x^{7} - 3 x^{6} + 3 x^{5} - 4 x^{4} - 5 x^{3} - 3 x^{2} - 3 x - 1$$

magma: DefiningPolynomial(K);

sage: K.defining_polynomial()

gp: K.pol

## Invariants

 Degree: $15$ magma: Degree(K);  sage: K.degree()  gp: poldegree(K.pol) Signature: $[1, 7]$ magma: Signature(K);  sage: K.signature()  gp: K.sign Discriminant: $$-3703260525677583=-\,3\cdot 13^{3}\cdot 561866260913$$ magma: Discriminant(Integers(K));  sage: K.disc()  gp: K.disc Root discriminant: $10.91$ magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));  sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $3, 13, 561866260913$ magma: PrimeDivisors(Discriminant(Integers(K)));  sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~ $|\Aut(K/\Q)|$: $1$ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{659} a^{14} + \frac{147}{659} a^{13} + \frac{157}{659} a^{12} + \frac{327}{659} a^{11} - \frac{48}{659} a^{10} + \frac{101}{659} a^{9} - \frac{111}{659} a^{8} - \frac{62}{659} a^{7} - \frac{6}{659} a^{6} - \frac{238}{659} a^{5} + \frac{127}{659} a^{4} - \frac{192}{659} a^{3} - \frac{276}{659} a^{2} - \frac{269}{659} a + \frac{115}{659}$

magma: IntegralBasis(K);

sage: K.integral_basis()

gp: K.zk

## Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);

sage: K.class_group().invariants()

gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);

sage: UK = K.unit_group()

 Rank: $7$ magma: UnitRank(K);  sage: UK.rank()  gp: K.fu Torsion generator: $$-1$$ (order $2$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);  sage: UK.torsion_generator()  gp: K.tu[2] Fundamental units: Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right magma: [K!f(g): g in Generators(UK)];  sage: UK.fundamental_units()  gp: K.fu Regulator: $$39.9823344692$$ magma: Regulator(K);  sage: K.regulator()  gp: K.reg

## Galois group

magma: GaloisGroup(K);

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

 A non-solvable group of order 1307674368000 The 176 conjugacy class representatives for S15 are not computed Character table for S15 is not computed

## Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.

## Sibling fields

 Degree 30 sibling: data not computed

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 $15$ R ${\href{/LocalNumberField/5.11.0.1}{11} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ $15$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ R $15$ $15$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.11.0.1}{11} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.13.0.1}{13} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2} 3.4.0.1x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.9.0.1$x^{9} - x^{3} + x^{2} + 1$$1$$9$$0$$C_9$$[\ ]^{9} 1313.2.0.1x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.3.4$x^{4} + 104$$4$$1$$3$$C_4$$[\ ]_{4} 13.9.0.1x^{9} - 2 x + 2$$1$$9$$0$$C_9$$[\ ]^{9}$
561866260913Data not computed