Normalized defining polynomial
\( x^{15} - 5 x^{14} + 5 x^{13} + 285 x^{12} - 1115 x^{11} + 242 x^{10} + 33455 x^{9} - 95580 x^{8} + 490815 x^{7} + 670115 x^{6} - 2042470 x^{5} - 42451640 x^{4} + 102976665 x^{3} - 43337470 x^{2} + 183470980 x + 425268514 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3674682958567667934420285323670000000000=-\,2^{10}\cdot 3^{13}\cdot 5^{10}\cdot 11^{12}\cdot 149^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $434.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{15} a^{8} + \frac{1}{15} a^{7} - \frac{2}{15} a^{6} + \frac{2}{5} a^{4} + \frac{2}{15} a^{2} + \frac{2}{15} a - \frac{4}{15}$, $\frac{1}{15} a^{9} + \frac{2}{15} a^{7} + \frac{2}{15} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{15} a^{3} + \frac{4}{15} a + \frac{4}{15}$, $\frac{1}{135} a^{10} + \frac{4}{135} a^{8} + \frac{1}{15} a^{7} - \frac{8}{135} a^{6} - \frac{4}{15} a^{5} + \frac{44}{135} a^{4} + \frac{1}{3} a^{3} + \frac{23}{135} a^{2} - \frac{1}{5} a + \frac{17}{135}$, $\frac{1}{135} a^{11} + \frac{4}{135} a^{9} - \frac{17}{135} a^{7} - \frac{2}{15} a^{6} + \frac{44}{135} a^{5} - \frac{1}{15} a^{4} + \frac{23}{135} a^{3} - \frac{1}{3} a^{2} - \frac{1}{135} a + \frac{4}{15}$, $\frac{1}{675} a^{12} + \frac{1}{675} a^{11} - \frac{1}{675} a^{10} - \frac{1}{135} a^{9} - \frac{2}{135} a^{8} - \frac{26}{675} a^{7} - \frac{32}{225} a^{6} + \frac{26}{675} a^{5} + \frac{29}{135} a^{4} + \frac{28}{135} a^{3} + \frac{298}{675} a^{2} + \frac{278}{675} a + \frac{302}{675}$, $\frac{1}{2025} a^{13} - \frac{2}{2025} a^{11} - \frac{4}{2025} a^{10} - \frac{1}{405} a^{9} - \frac{16}{2025} a^{8} + \frac{31}{405} a^{7} - \frac{103}{2025} a^{6} + \frac{119}{2025} a^{5} - \frac{1}{405} a^{4} + \frac{158}{2025} a^{3} + \frac{131}{405} a^{2} - \frac{292}{675} a - \frac{77}{2025}$, $\frac{1}{1080650439513491612239558816065078265583903025} a^{14} - \frac{26543340564039251021424498724505224549171}{1080650439513491612239558816065078265583903025} a^{13} + \frac{774683241357780464742197532115396854356458}{1080650439513491612239558816065078265583903025} a^{12} + \frac{439287925248674785913508721277109180641908}{1080650439513491612239558816065078265583903025} a^{11} - \frac{2114034462107159528415625854542725679768896}{1080650439513491612239558816065078265583903025} a^{10} - \frac{33966857187784565830698040350885342909072716}{1080650439513491612239558816065078265583903025} a^{9} + \frac{1012114855813015478682737760419936016104107}{360216813171163870746519605355026088527967675} a^{8} - \frac{36800598582343898736778843743147498223666741}{360216813171163870746519605355026088527967675} a^{7} - \frac{7637223369143688346954277597822931262439486}{360216813171163870746519605355026088527967675} a^{6} - \frac{355261228864630275788660991938758041326065534}{1080650439513491612239558816065078265583903025} a^{5} - \frac{81048121266393070661271342536585268287503052}{1080650439513491612239558816065078265583903025} a^{4} + \frac{403849965611105333812218833263497146055967502}{1080650439513491612239558816065078265583903025} a^{3} + \frac{60921808279993449210047275490675173473389684}{1080650439513491612239558816065078265583903025} a^{2} - \frac{20648571662650054909615724416256906601292781}{1080650439513491612239558816065078265583903025} a - \frac{3393034778372740340676879220043674628290072}{9914224215720106534307879046468607941136725}$
Class group and class number
$C_{5}\times C_{15}$, which has order $75$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5559866715429.072 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.8940.3, 5.1.148240125.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $149$ | $\Q_{149}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 149.2.1.2 | $x^{2} + 298$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |