Normalized defining polynomial
\( x^{15} - 2 x^{14} - 623 x^{13} + 956 x^{12} + 148616 x^{11} + 1678622 x^{10} - 22740148 x^{9} - 945266382 x^{8} + 4164671679 x^{7} + 68139475134 x^{6} + 2607605182191 x^{5} - 47700853439788 x^{4} + 481533826058428 x^{3} - 5829949369516366 x^{2} + 57762542818688054 x - 294690202775308898 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-35347664861463185809488152464433328209920000000000=-\,2^{23}\cdot 5^{10}\cdot 19^{13}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2010.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{55} a^{6} - \frac{4}{55} a^{5} + \frac{18}{55} a^{4} - \frac{16}{55} a^{3} + \frac{2}{55} a^{2} + \frac{18}{55} a + \frac{5}{11}$, $\frac{1}{55} a^{7} + \frac{2}{55} a^{5} + \frac{1}{55} a^{4} - \frac{7}{55} a^{3} + \frac{26}{55} a^{2} - \frac{13}{55} a - \frac{2}{11}$, $\frac{1}{1045} a^{8} - \frac{9}{1045} a^{7} + \frac{6}{1045} a^{6} + \frac{4}{95} a^{5} - \frac{32}{1045} a^{4} + \frac{476}{1045} a^{3} - \frac{371}{1045} a^{2} - \frac{492}{1045} a + \frac{421}{1045}$, $\frac{1}{11495} a^{9} + \frac{2}{11495} a^{8} + \frac{78}{11495} a^{7} - \frac{4}{11495} a^{6} - \frac{631}{11495} a^{5} + \frac{1587}{11495} a^{4} + \frac{5074}{11495} a^{3} + \frac{3616}{11495} a^{2} - \frac{1533}{11495} a - \frac{1392}{11495}$, $\frac{1}{57475} a^{10} + \frac{2}{57475} a^{9} + \frac{12}{57475} a^{8} - \frac{246}{57475} a^{7} + \frac{436}{57475} a^{6} + \frac{2654}{57475} a^{5} - \frac{24791}{57475} a^{4} + \frac{12119}{57475} a^{3} + \frac{27133}{57475} a^{2} - \frac{12183}{57475} a + \frac{1559}{5225}$, $\frac{1}{57475} a^{11} - \frac{2}{57475} a^{9} - \frac{3}{11495} a^{8} - \frac{237}{57475} a^{7} + \frac{337}{57475} a^{6} + \frac{5031}{57475} a^{5} - \frac{911}{3025} a^{4} + \frac{727}{11495} a^{3} + \frac{15861}{57475} a^{2} + \frac{2074}{11495} a - \frac{3878}{57475}$, $\frac{1}{632225} a^{12} + \frac{3}{632225} a^{11} + \frac{1}{632225} a^{10} - \frac{3}{126445} a^{9} - \frac{136}{632225} a^{8} - \frac{3147}{632225} a^{7} + \frac{766}{126445} a^{6} + \frac{59701}{632225} a^{5} + \frac{23878}{126445} a^{4} + \frac{293133}{632225} a^{3} + \frac{315902}{632225} a^{2} - \frac{20777}{57475} a + \frac{38053}{632225}$, $\frac{1}{6954475} a^{13} + \frac{1}{1390895} a^{12} + \frac{7}{6954475} a^{11} - \frac{2}{6954475} a^{10} - \frac{144}{6954475} a^{9} - \frac{2077}{6954475} a^{8} + \frac{67}{25289} a^{7} + \frac{21942}{6954475} a^{6} + \frac{114316}{6954475} a^{5} - \frac{1285353}{6954475} a^{4} - \frac{2388823}{6954475} a^{3} + \frac{36321}{278179} a^{2} - \frac{1113889}{6954475} a - \frac{19923}{73205}$, $\frac{1}{17163299996378708330645112828150338156600639372936795515592880468364626277925} a^{14} - \frac{252196853046457208443508762265040894479595994029187893938334546868}{264050769175057051240694043510005202409240605737489161778352007205609635045} a^{13} + \frac{11099296004495549118534847469504434083843518509101036119828831167675374}{17163299996378708330645112828150338156600639372936795515592880468364626277925} a^{12} - \frac{40822396742401469231465691570992917542516876324845872095985012195158018}{17163299996378708330645112828150338156600639372936795515592880468364626277925} a^{11} + \frac{51969375429384642513704503533019390261493800150282654746143248373619691}{17163299996378708330645112828150338156600639372936795515592880468364626277925} a^{10} - \frac{32474004442857102452476312416973816276631819754998923631319599736718982}{1560299999670791666422282984377303468781876306630617774144807315305875116175} a^{9} + \frac{363421144937387564430786506881002771049117614790285696439406523611356912}{2451899999482672618663587546878619736657234196133827930798982924052089468275} a^{8} - \frac{130531228415205487686945290320109567925429174701830578870509221704704124116}{17163299996378708330645112828150338156600639372936795515592880468364626277925} a^{7} - \frac{29841557722988429664280941286886986548376848687003986329522843022264537826}{3432659999275741666129022565630067631320127874587359103118576093672925255585} a^{6} + \frac{15996626565445248310516370302922350355957094456629406003597086081810384893}{1320253845875285256203470217550026012046203028687445808891760036028048175225} a^{5} - \frac{642636053686745047555088439336897465501249706978045617449720340014434617288}{17163299996378708330645112828150338156600639372936795515592880468364626277925} a^{4} - \frac{6789012220970849710295607715180808669773340120399453261055708227190454163807}{17163299996378708330645112828150338156600639372936795515592880468364626277925} a^{3} - \frac{5743180211217260970992821332450343423292811269795230274211968666585592825788}{17163299996378708330645112828150338156600639372936795515592880468364626277925} a^{2} + \frac{919470600645494461349587641054104641598341210722852899964161929002614849422}{17163299996378708330645112828150338156600639372936795515592880468364626277925} a - \frac{2944282263813171742803623636558508613739514832243293432412150401817780248471}{17163299996378708330645112828150338156600639372936795515592880468364626277925}$
Class group and class number
$C_{5}\times C_{5}\times C_{10}$, which has order $250$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 447144440989138750 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.22040.1, 5.1.184347134402000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | R | $15$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.19.17 | $x^{10} - 2 x^{4} + 4 x^{2} - 10$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ |
| 19.10.9.2 | $x^{10} + 76$ | $10$ | $1$ | $9$ | $D_{10}$ | $[\ ]_{10}^{2}$ | |
| $29$ | 29.5.4.1 | $x^{5} - 29$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ |
| 29.10.9.1 | $x^{10} - 29$ | $10$ | $1$ | $9$ | $D_{10}$ | $[\ ]_{10}^{2}$ |