Normalized defining polynomial
\( x^{15} - 5 x^{14} - 30 x^{13} + 10 x^{12} + 965 x^{11} - 2819 x^{10} + 7380 x^{9} - 273620 x^{8} - 3835960 x^{7} + 7674660 x^{6} - 2572288 x^{5} - 189916220 x^{4} + 592975880 x^{3} - 2416077960 x^{2} + 2563933460 x - 8065689292 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-34898680216597968037915833600000000000000000=-\,2^{23}\cdot 3^{12}\cdot 5^{17}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $799.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} + \frac{2}{5}$, $\frac{1}{15} a^{6} + \frac{1}{15} a^{5} + \frac{1}{3} a^{3} + \frac{7}{15} a + \frac{7}{15}$, $\frac{1}{15} a^{7} - \frac{1}{15} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{7}{15} a^{2} - \frac{7}{15}$, $\frac{1}{15} a^{8} - \frac{1}{3} a^{4} - \frac{1}{5} a^{3} - \frac{1}{3}$, $\frac{1}{75} a^{9} - \frac{2}{75} a^{8} - \frac{1}{75} a^{7} + \frac{2}{75} a^{6} + \frac{1}{75} a^{5} + \frac{17}{75} a^{4} - \frac{3}{25} a^{3} + \frac{8}{75} a^{2} + \frac{3}{25} a - \frac{8}{75}$, $\frac{1}{8700} a^{10} - \frac{31}{8700} a^{9} - \frac{7}{2175} a^{8} - \frac{39}{1450} a^{7} + \frac{173}{8700} a^{6} - \frac{229}{2900} a^{5} - \frac{988}{2175} a^{4} - \frac{844}{2175} a^{3} + \frac{418}{2175} a^{2} - \frac{389}{1450} a - \frac{503}{1450}$, $\frac{1}{8700} a^{11} + \frac{11}{1740} a^{9} - \frac{1}{30} a^{8} - \frac{1}{1740} a^{7} - \frac{49}{2175} a^{6} + \frac{49}{580} a^{5} - \frac{187}{435} a^{4} + \frac{181}{435} a^{3} + \frac{53}{290} a^{2} - \frac{133}{725} a - \frac{91}{290}$, $\frac{1}{130500} a^{12} - \frac{1}{130500} a^{11} + \frac{1}{32625} a^{10} - \frac{31}{6525} a^{9} - \frac{307}{26100} a^{8} + \frac{2579}{130500} a^{7} + \frac{869}{32625} a^{6} + \frac{433}{65250} a^{5} - \frac{2152}{6525} a^{4} - \frac{1847}{13050} a^{3} + \frac{18527}{65250} a^{2} - \frac{13561}{32625} a - \frac{3671}{32625}$, $\frac{1}{130500} a^{13} + \frac{1}{43500} a^{11} - \frac{1}{130500} a^{10} - \frac{17}{6525} a^{9} + \frac{247}{10875} a^{8} - \frac{427}{26100} a^{7} - \frac{4103}{130500} a^{6} - \frac{11}{14500} a^{5} + \frac{3797}{13050} a^{4} + \frac{12806}{32625} a^{3} + \frac{1861}{4350} a^{2} - \frac{10603}{21750} a - \frac{9697}{65250}$, $\frac{1}{5868157741347275803939371843265162209000} a^{14} - \frac{7939280318373886252165350282919687}{5868157741347275803939371843265162209000} a^{13} - \frac{491994756619013757079349350606259}{195605258044909193464645728108838740300} a^{12} + \frac{166205256062791872220290925052657713}{2934078870673637901969685921632581104500} a^{11} - \frac{1956222771797070666113285863381979}{391210516089818386929291456217677480600} a^{10} - \frac{10318851833032590600211857507698851091}{5868157741347275803939371843265162209000} a^{9} + \frac{93298329052676613372256989173504550821}{2934078870673637901969685921632581104500} a^{8} - \frac{417910855087528193012637499151780481}{32600876340818198910774288018139790050} a^{7} - \frac{49072250470598792445598475951858165333}{2934078870673637901969685921632581104500} a^{6} + \frac{1463095105660642654621277679071282929}{20235026694300951048066799459535042100} a^{5} - \frac{17361738887522430381847055228770521227}{326008763408181989107742880181397900500} a^{4} - \frac{81795607400064133487435688986945751917}{1467039435336818950984842960816290552250} a^{3} - \frac{1824348183957291235352927691621799103}{16300438170409099455387144009069895025} a^{2} + \frac{174952650730307994418673654371001575891}{1467039435336818950984842960816290552250} a - \frac{21880859999781768756746006490744765586}{146703943533681895098484296081629055225}$
Class group and class number
$C_{5}\times C_{10}$, which has order $50$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 567390527898541.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.5800.1, 5.1.2864488050000.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | R | $15$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.19.49 | $x^{10} - 6$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.15.17.3 | $x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10$ | $15$ | $1$ | $17$ | $F_5 \times S_3$ | $[5/4]_{12}^{2}$ |
| $29$ | 29.5.4.1 | $x^{5} - 29$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ |
| 29.10.9.2 | $x^{10} + 58$ | $10$ | $1$ | $9$ | $D_{10}$ | $[\ ]_{10}^{2}$ |