Normalized defining polynomial
\( x^{15} - 4 x^{14} + 3 x^{13} + 8 x^{12} + 27 x^{11} - 92 x^{10} + 113 x^{9} + 8 x^{8} + 334 x^{7} - 96 x^{6} + 2102 x^{5} - 1080 x^{4} + 2129 x^{3} - 773 x^{2} + 570 x - 225 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-34740892637448264404263=-\,7^{10}\cdot 103^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{15} a^{9} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{15} a$, $\frac{1}{15} a^{10} - \frac{2}{15} a^{8} + \frac{1}{15} a^{7} - \frac{1}{3} a^{6} - \frac{2}{15} a^{5} - \frac{2}{15} a^{4} - \frac{1}{3} a^{3} - \frac{2}{5} a^{2} - \frac{1}{3} a$, $\frac{1}{15} a^{11} + \frac{1}{15} a^{8} + \frac{1}{15} a^{7} - \frac{1}{3} a^{6} - \frac{2}{15} a^{5} + \frac{1}{15} a^{4} - \frac{1}{3} a^{2} - \frac{2}{15} a$, $\frac{1}{45} a^{12} - \frac{1}{45} a^{11} + \frac{1}{45} a^{9} - \frac{1}{9} a^{8} - \frac{11}{45} a^{7} - \frac{2}{45} a^{6} - \frac{2}{45} a^{5} - \frac{7}{15} a^{4} + \frac{1}{9} a^{3} + \frac{13}{45} a^{2} + \frac{4}{15} a$, $\frac{1}{458865} a^{13} - \frac{301}{152955} a^{12} + \frac{1406}{458865} a^{11} + \frac{8716}{458865} a^{10} + \frac{4652}{458865} a^{9} - \frac{76432}{458865} a^{8} + \frac{56456}{458865} a^{7} - \frac{167194}{458865} a^{6} + \frac{43664}{91773} a^{5} + \frac{16843}{41715} a^{4} - \frac{4}{99} a^{3} + \frac{104461}{458865} a^{2} + \frac{72163}{152955} a + \frac{1906}{10197}$, $\frac{1}{2085223431555} a^{14} + \frac{293780}{417044686311} a^{13} + \frac{2662008550}{417044686311} a^{12} + \frac{825215059}{695074477185} a^{11} - \frac{1662178274}{139014895437} a^{10} + \frac{10776400004}{417044686311} a^{9} - \frac{235308679919}{2085223431555} a^{8} - \frac{664871437094}{2085223431555} a^{7} + \frac{3057969838}{12637717767} a^{6} - \frac{8830938992}{46338298479} a^{5} + \frac{45854422466}{2085223431555} a^{4} - \frac{192370752688}{417044686311} a^{3} - \frac{836694004739}{2085223431555} a^{2} + \frac{202831342741}{695074477185} a - \frac{8758935170}{46338298479}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 147159.120328 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 30 |
| The 9 conjugacy class representatives for $D_{15}$ |
| Character table for $D_{15}$ |
Intermediate fields
| 3.1.5047.1, 5.1.10609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $103$ | $\Q_{103}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |