Properties

Label 15.1.345...343.1
Degree $15$
Signature $[1, 7]$
Discriminant $-3.454\times 10^{23}$
Root discriminant \(37.09\)
Ramified primes $7,11,13$
Class number $3$ (GRH)
Class group [3] (GRH)
Galois group $D_{15}$ (as 15T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 7*x^14 + 22*x^13 - 38*x^12 + 86*x^11 - 206*x^10 + 364*x^9 - 800*x^8 - 1462*x^7 + 615*x^6 - 6007*x^5 + 2169*x^4 - 965*x^3 - 13194*x^2 + 6050*x - 19375)
 
gp: K = bnfinit(y^15 - 7*y^14 + 22*y^13 - 38*y^12 + 86*y^11 - 206*y^10 + 364*y^9 - 800*y^8 - 1462*y^7 + 615*y^6 - 6007*y^5 + 2169*y^4 - 965*y^3 - 13194*y^2 + 6050*y - 19375, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^15 - 7*x^14 + 22*x^13 - 38*x^12 + 86*x^11 - 206*x^10 + 364*x^9 - 800*x^8 - 1462*x^7 + 615*x^6 - 6007*x^5 + 2169*x^4 - 965*x^3 - 13194*x^2 + 6050*x - 19375);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 7*x^14 + 22*x^13 - 38*x^12 + 86*x^11 - 206*x^10 + 364*x^9 - 800*x^8 - 1462*x^7 + 615*x^6 - 6007*x^5 + 2169*x^4 - 965*x^3 - 13194*x^2 + 6050*x - 19375)
 

\( x^{15} - 7 x^{14} + 22 x^{13} - 38 x^{12} + 86 x^{11} - 206 x^{10} + 364 x^{9} - 800 x^{8} + \cdots - 19375 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $15$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-345408215017012205401343\) \(\medspace = -\,7^{10}\cdot 11^{7}\cdot 13^{7}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(37.09\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{2/3}11^{1/2}13^{1/2}\approx 43.758931819174485$
Ramified primes:   \(7\), \(11\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-143}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5}a^{9}+\frac{1}{5}a^{8}+\frac{1}{5}a^{6}+\frac{2}{5}a^{5}-\frac{1}{5}a^{3}-\frac{1}{5}a^{2}-\frac{1}{5}a$, $\frac{1}{5}a^{10}-\frac{1}{5}a^{8}+\frac{1}{5}a^{7}+\frac{1}{5}a^{6}-\frac{2}{5}a^{5}-\frac{1}{5}a^{4}+\frac{1}{5}a$, $\frac{1}{55}a^{11}+\frac{4}{55}a^{10}-\frac{4}{55}a^{9}-\frac{21}{55}a^{8}+\frac{2}{11}a^{7}-\frac{6}{55}a^{6}+\frac{2}{11}a^{5}+\frac{1}{55}a^{4}-\frac{2}{55}a^{3}+\frac{19}{55}a^{2}+\frac{2}{5}a+\frac{2}{11}$, $\frac{1}{55}a^{12}+\frac{2}{55}a^{10}-\frac{1}{11}a^{9}+\frac{17}{55}a^{8}-\frac{24}{55}a^{7}+\frac{1}{55}a^{6}+\frac{27}{55}a^{5}+\frac{27}{55}a^{4}+\frac{27}{55}a^{3}+\frac{1}{55}a^{2}-\frac{1}{55}a+\frac{3}{11}$, $\frac{1}{55}a^{13}-\frac{2}{55}a^{10}+\frac{3}{55}a^{9}-\frac{3}{11}a^{8}-\frac{8}{55}a^{7}-\frac{27}{55}a^{6}-\frac{4}{55}a^{5}+\frac{14}{55}a^{4}+\frac{27}{55}a^{3}-\frac{17}{55}a^{2}+\frac{4}{55}a-\frac{4}{11}$, $\frac{1}{63\!\cdots\!25}a^{14}+\frac{22\!\cdots\!98}{63\!\cdots\!25}a^{13}+\frac{49\!\cdots\!57}{63\!\cdots\!25}a^{12}+\frac{49\!\cdots\!27}{63\!\cdots\!25}a^{11}+\frac{26\!\cdots\!31}{63\!\cdots\!25}a^{10}-\frac{15\!\cdots\!96}{63\!\cdots\!25}a^{9}-\frac{12\!\cdots\!76}{63\!\cdots\!25}a^{8}-\frac{31\!\cdots\!76}{12\!\cdots\!05}a^{7}-\frac{83\!\cdots\!22}{63\!\cdots\!25}a^{6}-\frac{59\!\cdots\!43}{19\!\cdots\!91}a^{5}+\frac{14\!\cdots\!73}{63\!\cdots\!25}a^{4}-\frac{27\!\cdots\!61}{63\!\cdots\!25}a^{3}+\frac{46\!\cdots\!28}{12\!\cdots\!05}a^{2}+\frac{49\!\cdots\!16}{63\!\cdots\!25}a-\frac{66\!\cdots\!85}{25\!\cdots\!21}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{22\!\cdots\!31}{48\!\cdots\!75}a^{14}-\frac{98\!\cdots\!52}{48\!\cdots\!75}a^{13}+\frac{88\!\cdots\!42}{48\!\cdots\!75}a^{12}+\frac{35\!\cdots\!32}{48\!\cdots\!75}a^{11}+\frac{22\!\cdots\!26}{48\!\cdots\!75}a^{10}-\frac{12\!\cdots\!96}{48\!\cdots\!75}a^{9}-\frac{20\!\cdots\!76}{48\!\cdots\!75}a^{8}+\frac{34\!\cdots\!59}{96\!\cdots\!55}a^{7}-\frac{69\!\cdots\!37}{48\!\cdots\!75}a^{6}-\frac{17\!\cdots\!78}{96\!\cdots\!55}a^{5}-\frac{49\!\cdots\!32}{48\!\cdots\!75}a^{4}-\frac{13\!\cdots\!66}{48\!\cdots\!75}a^{3}-\frac{12\!\cdots\!51}{96\!\cdots\!55}a^{2}-\frac{89\!\cdots\!99}{48\!\cdots\!75}a-\frac{20\!\cdots\!66}{19\!\cdots\!91}$, $\frac{36\!\cdots\!37}{48\!\cdots\!75}a^{14}-\frac{18\!\cdots\!64}{48\!\cdots\!75}a^{13}+\frac{23\!\cdots\!44}{48\!\cdots\!75}a^{12}+\frac{42\!\cdots\!89}{48\!\cdots\!75}a^{11}+\frac{44\!\cdots\!17}{48\!\cdots\!75}a^{10}-\frac{32\!\cdots\!77}{48\!\cdots\!75}a^{9}+\frac{81\!\cdots\!13}{48\!\cdots\!75}a^{8}-\frac{97\!\cdots\!89}{96\!\cdots\!55}a^{7}-\frac{10\!\cdots\!49}{48\!\cdots\!75}a^{6}-\frac{23\!\cdots\!51}{96\!\cdots\!55}a^{5}+\frac{19\!\cdots\!91}{48\!\cdots\!75}a^{4}-\frac{17\!\cdots\!77}{48\!\cdots\!75}a^{3}+\frac{18\!\cdots\!76}{19\!\cdots\!91}a^{2}+\frac{24\!\cdots\!32}{48\!\cdots\!75}a-\frac{16\!\cdots\!98}{19\!\cdots\!91}$, $\frac{6246985794080}{25\!\cdots\!51}a^{14}-\frac{366663832764178}{12\!\cdots\!55}a^{13}+\frac{16\!\cdots\!11}{12\!\cdots\!55}a^{12}-\frac{39\!\cdots\!96}{12\!\cdots\!55}a^{11}+\frac{82\!\cdots\!84}{12\!\cdots\!55}a^{10}-\frac{46\!\cdots\!47}{25\!\cdots\!51}a^{9}+\frac{48\!\cdots\!93}{12\!\cdots\!55}a^{8}-\frac{18\!\cdots\!52}{25\!\cdots\!51}a^{7}+\frac{14\!\cdots\!83}{12\!\cdots\!55}a^{6}+\frac{764974907676399}{98\!\cdots\!05}a^{5}+\frac{30\!\cdots\!14}{12\!\cdots\!55}a^{4}+\frac{10\!\cdots\!48}{12\!\cdots\!55}a^{3}+\frac{51\!\cdots\!73}{12\!\cdots\!55}a^{2}+\frac{20\!\cdots\!30}{25\!\cdots\!51}a+\frac{98\!\cdots\!82}{25\!\cdots\!51}$, $\frac{27\!\cdots\!62}{63\!\cdots\!25}a^{14}-\frac{24\!\cdots\!29}{63\!\cdots\!25}a^{13}-\frac{11\!\cdots\!26}{63\!\cdots\!25}a^{12}+\frac{72\!\cdots\!64}{63\!\cdots\!25}a^{11}-\frac{19\!\cdots\!33}{63\!\cdots\!25}a^{10}+\frac{41\!\cdots\!83}{63\!\cdots\!25}a^{9}-\frac{98\!\cdots\!07}{63\!\cdots\!25}a^{8}+\frac{46\!\cdots\!43}{12\!\cdots\!05}a^{7}-\frac{57\!\cdots\!24}{63\!\cdots\!25}a^{6}+\frac{88\!\cdots\!26}{96\!\cdots\!55}a^{5}+\frac{17\!\cdots\!81}{63\!\cdots\!25}a^{4}-\frac{11\!\cdots\!02}{63\!\cdots\!25}a^{3}+\frac{38\!\cdots\!86}{12\!\cdots\!05}a^{2}-\frac{22\!\cdots\!53}{63\!\cdots\!25}a+\frac{50\!\cdots\!12}{25\!\cdots\!21}$, $\frac{51\!\cdots\!69}{25\!\cdots\!21}a^{14}-\frac{13\!\cdots\!18}{12\!\cdots\!05}a^{13}+\frac{21\!\cdots\!02}{12\!\cdots\!05}a^{12}+\frac{24\!\cdots\!92}{12\!\cdots\!05}a^{11}+\frac{13\!\cdots\!04}{12\!\cdots\!05}a^{10}-\frac{51\!\cdots\!98}{12\!\cdots\!05}a^{9}+\frac{13\!\cdots\!73}{25\!\cdots\!21}a^{8}-\frac{15\!\cdots\!28}{12\!\cdots\!05}a^{7}-\frac{37\!\cdots\!79}{12\!\cdots\!05}a^{6}-\frac{99\!\cdots\!33}{96\!\cdots\!55}a^{5}+\frac{88\!\cdots\!43}{12\!\cdots\!05}a^{4}-\frac{21\!\cdots\!08}{25\!\cdots\!21}a^{3}-\frac{17\!\cdots\!28}{12\!\cdots\!05}a^{2}+\frac{14\!\cdots\!97}{12\!\cdots\!05}a-\frac{13\!\cdots\!07}{25\!\cdots\!21}$, $\frac{91\!\cdots\!26}{57\!\cdots\!75}a^{14}-\frac{83\!\cdots\!77}{57\!\cdots\!75}a^{13}+\frac{31\!\cdots\!12}{57\!\cdots\!75}a^{12}-\frac{55\!\cdots\!68}{57\!\cdots\!75}a^{11}+\frac{58\!\cdots\!41}{57\!\cdots\!75}a^{10}-\frac{14\!\cdots\!31}{57\!\cdots\!75}a^{9}+\frac{46\!\cdots\!09}{57\!\cdots\!75}a^{8}-\frac{22\!\cdots\!04}{11\!\cdots\!55}a^{7}-\frac{89\!\cdots\!32}{57\!\cdots\!75}a^{6}+\frac{60\!\cdots\!14}{88\!\cdots\!05}a^{5}-\frac{37\!\cdots\!97}{52\!\cdots\!25}a^{4}+\frac{21\!\cdots\!89}{52\!\cdots\!25}a^{3}+\frac{70\!\cdots\!36}{11\!\cdots\!55}a^{2}-\frac{10\!\cdots\!84}{57\!\cdots\!75}a+\frac{55\!\cdots\!22}{23\!\cdots\!11}$, $\frac{17\!\cdots\!17}{63\!\cdots\!25}a^{14}-\frac{87\!\cdots\!04}{63\!\cdots\!25}a^{13}+\frac{10\!\cdots\!69}{63\!\cdots\!25}a^{12}+\frac{16\!\cdots\!89}{63\!\cdots\!25}a^{11}+\frac{49\!\cdots\!12}{63\!\cdots\!25}a^{10}-\frac{16\!\cdots\!37}{63\!\cdots\!25}a^{9}-\frac{21\!\cdots\!22}{63\!\cdots\!25}a^{8}-\frac{14\!\cdots\!24}{25\!\cdots\!21}a^{7}-\frac{34\!\cdots\!14}{63\!\cdots\!25}a^{6}-\frac{20\!\cdots\!14}{96\!\cdots\!55}a^{5}+\frac{11\!\cdots\!91}{63\!\cdots\!25}a^{4}-\frac{62\!\cdots\!37}{63\!\cdots\!25}a^{3}-\frac{33\!\cdots\!37}{12\!\cdots\!05}a^{2}-\frac{62\!\cdots\!23}{63\!\cdots\!25}a-\frac{57\!\cdots\!63}{25\!\cdots\!21}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 478768.310095 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{7}\cdot 478768.310095 \cdot 3}{2\cdot\sqrt{345408215017012205401343}}\cr\approx \mathstrut & 0.944798942600 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^15 - 7*x^14 + 22*x^13 - 38*x^12 + 86*x^11 - 206*x^10 + 364*x^9 - 800*x^8 - 1462*x^7 + 615*x^6 - 6007*x^5 + 2169*x^4 - 965*x^3 - 13194*x^2 + 6050*x - 19375)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^15 - 7*x^14 + 22*x^13 - 38*x^12 + 86*x^11 - 206*x^10 + 364*x^9 - 800*x^8 - 1462*x^7 + 615*x^6 - 6007*x^5 + 2169*x^4 - 965*x^3 - 13194*x^2 + 6050*x - 19375, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^15 - 7*x^14 + 22*x^13 - 38*x^12 + 86*x^11 - 206*x^10 + 364*x^9 - 800*x^8 - 1462*x^7 + 615*x^6 - 6007*x^5 + 2169*x^4 - 965*x^3 - 13194*x^2 + 6050*x - 19375);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 7*x^14 + 22*x^13 - 38*x^12 + 86*x^11 - 206*x^10 + 364*x^9 - 800*x^8 - 1462*x^7 + 615*x^6 - 6007*x^5 + 2169*x^4 - 965*x^3 - 13194*x^2 + 6050*x - 19375);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{15}$ (as 15T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 30
The 9 conjugacy class representatives for $D_{15}$
Character table for $D_{15}$

Intermediate fields

3.1.7007.1, 5.1.20449.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 30
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $15$ $15$ ${\href{/padicField/5.2.0.1}{2} }^{7}{,}\,{\href{/padicField/5.1.0.1}{1} }$ R R R ${\href{/padicField/17.2.0.1}{2} }^{7}{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.5.0.1}{5} }^{3}$ ${\href{/padicField/23.5.0.1}{5} }^{3}$ ${\href{/padicField/29.2.0.1}{2} }^{7}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.2.0.1}{2} }^{7}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.2.0.1}{2} }^{7}{,}\,{\href{/padicField/37.1.0.1}{1} }$ $15$ ${\href{/padicField/43.2.0.1}{2} }^{7}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.2.0.1}{2} }^{7}{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.5.0.1}{5} }^{3}$ ${\href{/padicField/59.2.0.1}{2} }^{7}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display 7.15.10.2$x^{15} + 2401 x^{3} - 67228$$3$$5$$10$$C_{15}$$[\ ]_{3}^{5}$
\(11\) Copy content Toggle raw display $\Q_{11}$$x + 9$$1$$1$$0$Trivial$[\ ]$
11.2.1.1$x^{2} + 22$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} + 22$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} + 22$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} + 22$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} + 22$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} + 22$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} + 22$$2$$1$$1$$C_2$$[\ ]_{2}$
\(13\) Copy content Toggle raw display $\Q_{13}$$x + 11$$1$$1$$0$Trivial$[\ ]$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.143.2t1.a.a$1$ $ 11 \cdot 13 $ \(\Q(\sqrt{-143}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.7007.3t2.a.a$2$ $ 7^{2} \cdot 11 \cdot 13 $ 3.1.7007.1 $S_3$ (as 3T2) $1$ $0$
* 2.143.5t2.a.b$2$ $ 11 \cdot 13 $ 5.1.20449.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.143.5t2.a.a$2$ $ 11 \cdot 13 $ 5.1.20449.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.7007.15t2.a.b$2$ $ 7^{2} \cdot 11 \cdot 13 $ 15.1.345408215017012205401343.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.7007.15t2.a.d$2$ $ 7^{2} \cdot 11 \cdot 13 $ 15.1.345408215017012205401343.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.7007.15t2.a.a$2$ $ 7^{2} \cdot 11 \cdot 13 $ 15.1.345408215017012205401343.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.7007.15t2.a.c$2$ $ 7^{2} \cdot 11 \cdot 13 $ 15.1.345408215017012205401343.1 $D_{15}$ (as 15T2) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.