Normalized defining polynomial
\( x^{15} - 7 x^{14} + 22 x^{13} - 38 x^{12} + 86 x^{11} - 206 x^{10} + 364 x^{9} - 800 x^{8} - 1462 x^{7} + 615 x^{6} - 6007 x^{5} + 2169 x^{4} - 965 x^{3} - 13194 x^{2} + 6050 x - 19375 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-345408215017012205401343=-\,7^{10}\cdot 11^{7}\cdot 13^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a$, $\frac{1}{55} a^{11} + \frac{4}{55} a^{10} - \frac{4}{55} a^{9} - \frac{21}{55} a^{8} + \frac{2}{11} a^{7} - \frac{6}{55} a^{6} + \frac{2}{11} a^{5} + \frac{1}{55} a^{4} - \frac{2}{55} a^{3} + \frac{19}{55} a^{2} + \frac{2}{5} a + \frac{2}{11}$, $\frac{1}{55} a^{12} + \frac{2}{55} a^{10} - \frac{1}{11} a^{9} + \frac{17}{55} a^{8} - \frac{24}{55} a^{7} + \frac{1}{55} a^{6} + \frac{27}{55} a^{5} + \frac{27}{55} a^{4} + \frac{27}{55} a^{3} + \frac{1}{55} a^{2} - \frac{1}{55} a + \frac{3}{11}$, $\frac{1}{55} a^{13} - \frac{2}{55} a^{10} + \frac{3}{55} a^{9} - \frac{3}{11} a^{8} - \frac{8}{55} a^{7} - \frac{27}{55} a^{6} - \frac{4}{55} a^{5} + \frac{14}{55} a^{4} + \frac{27}{55} a^{3} - \frac{17}{55} a^{2} + \frac{4}{55} a - \frac{4}{11}$, $\frac{1}{63486873845515044534778025} a^{14} + \frac{22314214597442891366998}{63486873845515044534778025} a^{13} + \frac{492985965836091714815157}{63486873845515044534778025} a^{12} + \frac{49348861651856051002127}{63486873845515044534778025} a^{11} + \frac{2622342283597218999654031}{63486873845515044534778025} a^{10} - \frac{155099712624913135192496}{63486873845515044534778025} a^{9} - \frac{12945772109613267780297776}{63486873845515044534778025} a^{8} - \frac{3185726007132139752131976}{12697374769103008906955605} a^{7} - \frac{8395081930636697225288022}{63486873845515044534778025} a^{6} - \frac{5941398568258988965243}{19385304990996960163291} a^{5} + \frac{14755837682999405837224373}{63486873845515044534778025} a^{4} - \frac{27399069260842808156770161}{63486873845515044534778025} a^{3} + \frac{4652011471182629198958828}{12697374769103008906955605} a^{2} + \frac{4938808752992268219186416}{63486873845515044534778025} a - \frac{667329136922010890779685}{2539474953820601781391121}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 478768.310095 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 30 |
| The 9 conjugacy class representatives for $D_{15}$ |
| Character table for $D_{15}$ |
Intermediate fields
| 3.1.7007.1, 5.1.20449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | R | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |