Properties

Label 15.1.34286727846...6368.1
Degree $15$
Signature $[1, 7]$
Discriminant $-\,2^{10}\cdot 443^{7}$
Root discriminant $27.27$
Ramified primes $2, 443$
Class number $1$
Class group Trivial
Galois group $D_{15}$ (as 15T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![490, -1778, 4350, -6977, 8590, -7846, 5514, -2697, 786, 94, -242, 169, -74, 26, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 6*x^14 + 26*x^13 - 74*x^12 + 169*x^11 - 242*x^10 + 94*x^9 + 786*x^8 - 2697*x^7 + 5514*x^6 - 7846*x^5 + 8590*x^4 - 6977*x^3 + 4350*x^2 - 1778*x + 490)
 
gp: K = bnfinit(x^15 - 6*x^14 + 26*x^13 - 74*x^12 + 169*x^11 - 242*x^10 + 94*x^9 + 786*x^8 - 2697*x^7 + 5514*x^6 - 7846*x^5 + 8590*x^4 - 6977*x^3 + 4350*x^2 - 1778*x + 490, 1)
 

Normalized defining polynomial

\( x^{15} - 6 x^{14} + 26 x^{13} - 74 x^{12} + 169 x^{11} - 242 x^{10} + 94 x^{9} + 786 x^{8} - 2697 x^{7} + 5514 x^{6} - 7846 x^{5} + 8590 x^{4} - 6977 x^{3} + 4350 x^{2} - 1778 x + 490 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-3428672784633475386368=-\,2^{10}\cdot 443^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.27$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 443$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{3}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{8} a^{9} - \frac{3}{8} a^{5} + \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{112} a^{13} + \frac{5}{112} a^{11} - \frac{1}{56} a^{10} + \frac{5}{56} a^{9} - \frac{1}{28} a^{7} + \frac{3}{56} a^{6} - \frac{29}{112} a^{5} - \frac{11}{56} a^{4} + \frac{23}{112} a^{3} - \frac{9}{28} a^{2} - \frac{23}{56} a + \frac{1}{8}$, $\frac{1}{74189920} a^{14} - \frac{3425}{2119712} a^{13} + \frac{1623501}{74189920} a^{12} - \frac{2644413}{74189920} a^{11} - \frac{59452}{2318435} a^{10} - \frac{575559}{5299280} a^{9} + \frac{1575307}{18547480} a^{8} + \frac{2838587}{37094960} a^{7} + \frac{466857}{74189920} a^{6} - \frac{1279419}{74189920} a^{5} + \frac{2950653}{14837984} a^{4} + \frac{2659171}{14837984} a^{3} + \frac{7085139}{37094960} a^{2} + \frac{68193}{1324820} a + \frac{11647}{151408}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 191156.293017 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_{15}$ (as 15T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 30
The 9 conjugacy class representatives for $D_{15}$
Character table for $D_{15}$

Intermediate fields

3.1.1772.1, 5.1.196249.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $15$ ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ $15$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ $15$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ $15$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ $15$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
443Data not computed