Normalized defining polynomial
\( x^{15} - 5 x^{14} - 5 x^{13} - 15 x^{12} + 265 x^{11} - 1927 x^{10} + 6615 x^{9} - 51485 x^{8} - 790005 x^{7} + 1814005 x^{6} - 636307 x^{5} - 19232005 x^{4} + 56139395 x^{3} - 238258865 x^{2} + 169553865 x - 501418879 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-32192049904498705314600000000000000000=-\,2^{18}\cdot 3^{12}\cdot 5^{17}\cdot 13^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $316.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{10} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a + \frac{1}{10}$, $\frac{1}{30} a^{6} + \frac{1}{30} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{3}{10} a - \frac{7}{15}$, $\frac{1}{30} a^{7} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{7}{15} a^{2} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{30} a^{8} + \frac{1}{3} a^{4} - \frac{7}{15} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{300} a^{9} - \frac{1}{300} a^{8} - \frac{1}{75} a^{7} + \frac{1}{75} a^{6} - \frac{1}{75} a^{5} + \frac{53}{150} a^{4} + \frac{12}{25} a^{3} - \frac{31}{75} a^{2} + \frac{33}{100} a - \frac{49}{300}$, $\frac{1}{3900} a^{10} + \frac{1}{975} a^{9} + \frac{61}{3900} a^{8} + \frac{9}{650} a^{7} + \frac{1}{650} a^{6} + \frac{53}{1950} a^{5} + \frac{49}{150} a^{4} - \frac{3}{50} a^{3} + \frac{73}{300} a^{2} + \frac{61}{150} a + \frac{5}{12}$, $\frac{1}{3900} a^{11} + \frac{1}{650} a^{9} - \frac{7}{1300} a^{8} - \frac{9}{650} a^{7} + \frac{14}{975} a^{6} - \frac{17}{1950} a^{5} - \frac{13}{50} a^{4} - \frac{9}{100} a^{3} + \frac{13}{75} a^{2} - \frac{1}{3} a - \frac{133}{300}$, $\frac{1}{117000} a^{12} + \frac{1}{58500} a^{11} + \frac{1}{19500} a^{10} + \frac{4}{2925} a^{9} + \frac{233}{23400} a^{8} + \frac{2}{125} a^{7} + \frac{7}{2250} a^{6} - \frac{439}{9750} a^{5} + \frac{53}{600} a^{4} + \frac{323}{900} a^{3} - \frac{79}{4500} a^{2} - \frac{73}{750} a + \frac{3427}{9000}$, $\frac{1}{117000} a^{13} + \frac{1}{58500} a^{11} - \frac{1}{58500} a^{10} - \frac{29}{23400} a^{9} - \frac{709}{58500} a^{8} + \frac{89}{5850} a^{7} - \frac{82}{14625} a^{6} + \frac{877}{39000} a^{5} - \frac{106}{225} a^{4} + \frac{159}{500} a^{3} - \frac{239}{900} a^{2} + \frac{4009}{9000} a - \frac{967}{4500}$, $\frac{1}{209347933940892428194040010561000} a^{14} - \frac{38082353711340288837122833}{17445661161741035682836667546750} a^{13} - \frac{288443925965088037362676811}{104673966970446214097020005280500} a^{12} + \frac{11146109792973449873586711299}{104673966970446214097020005280500} a^{11} - \frac{8958970109236577379915572227}{209347933940892428194040010561000} a^{10} + \frac{56263819699602213717504621521}{104673966970446214097020005280500} a^{9} - \frac{713947183874937190405739262091}{104673966970446214097020005280500} a^{8} + \frac{529314195906593779613703758179}{52336983485223107048510002640250} a^{7} - \frac{355620203726205255740485564843}{69782644646964142731346670187000} a^{6} - \frac{2184574506459882665248563937561}{52336983485223107048510002640250} a^{5} + \frac{929412186395302520795540693647}{2683947871037082412744102699500} a^{4} - \frac{2563057866753559001499345620461}{8051843613111247238232308098500} a^{3} - \frac{61768035820231047081873900149}{16103687226222494476464616197000} a^{2} + \frac{2168083585123220152461768197723}{8051843613111247238232308098500} a + \frac{1085967612145489307742103107961}{2683947871037082412744102699500}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1023778341600.2203 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.1300.1, 5.1.115672050000.14 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $15$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.14.5 | $x^{10} - 2 x^{5} - 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.15.17.3 | $x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10$ | $15$ | $1$ | $17$ | $F_5 \times S_3$ | $[5/4]_{12}^{2}$ |
| $13$ | 13.5.4.1 | $x^{5} - 13$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 13.10.9.1 | $x^{10} - 13$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |