Normalized defining polynomial
\( x^{15} - 5 x^{14} + 11 x^{13} - 9 x^{12} - 7 x^{11} + 17 x^{10} - x^{9} - 29 x^{8} + 38 x^{7} - 13 x^{6} - 20 x^{5} + 24 x^{4} + 7 x^{3} - 23 x^{2} + 13 x - 1 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3142328914862177479=-\,439^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $439$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{9} a^{3} + \frac{2}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{9} a^{4} + \frac{2}{9} a^{2} + \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{3} a^{7} - \frac{4}{9} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{9} a^{2} + \frac{4}{9} a - \frac{4}{9}$, $\frac{1}{243} a^{14} + \frac{11}{243} a^{12} - \frac{8}{243} a^{11} - \frac{20}{243} a^{10} + \frac{25}{243} a^{9} - \frac{38}{243} a^{8} - \frac{1}{81} a^{7} + \frac{104}{243} a^{6} + \frac{7}{81} a^{5} + \frac{85}{243} a^{4} - \frac{64}{243} a^{3} - \frac{97}{243} a^{2} - \frac{49}{243} a + \frac{11}{243}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2414.83246229 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 30 |
| The 9 conjugacy class representatives for $D_{15}$ |
| Character table for $D_{15}$ |
Intermediate fields
| 3.1.439.1, 5.1.192721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 439 | Data not computed | ||||||