Normalized defining polynomial
\( x^{15} - 5 x^{14} - 25 x^{13} + 705 x^{12} - 1235 x^{11} - 16633 x^{10} + 277655 x^{9} + 231705 x^{8} - 3692325 x^{7} + 28332665 x^{6} + 132709223 x^{5} - 125865275 x^{4} + 203969475 x^{3} + 6121946705 x^{2} + 13423647535 x + 5856994189 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3090436790831875710201600000000000000000=-\,2^{23}\cdot 3^{13}\cdot 5^{17}\cdot 13^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $429.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{858} a^{10} + \frac{21}{143} a^{9} + \frac{29}{78} a^{8} - \frac{40}{143} a^{7} + \frac{53}{429} a^{6} + \frac{35}{143} a^{5} - \frac{68}{429} a^{4} - \frac{2}{13} a^{3} - \frac{397}{858} a^{2} - \frac{15}{143} a - \frac{217}{858}$, $\frac{1}{858} a^{11} - \frac{113}{858} a^{9} - \frac{18}{143} a^{8} + \frac{158}{429} a^{7} - \frac{46}{143} a^{6} + \frac{1}{429} a^{5} - \frac{2}{11} a^{4} - \frac{67}{858} a^{3} + \frac{28}{143} a^{2} - \frac{31}{858} a - \frac{19}{143}$, $\frac{1}{858} a^{12} + \frac{67}{143} a^{9} + \frac{109}{286} a^{8} + \frac{10}{143} a^{7} - \frac{16}{429} a^{6} + \frac{68}{143} a^{5} + \frac{3}{286} a^{4} - \frac{27}{143} a^{3} - \frac{46}{143} a^{2} + \frac{2}{143} a + \frac{361}{858}$, $\frac{1}{24300276} a^{13} - \frac{647}{1157156} a^{12} + \frac{1759}{6075069} a^{11} - \frac{4}{21021} a^{10} - \frac{6591407}{24300276} a^{9} + \frac{7404125}{24300276} a^{8} + \frac{1630424}{6075069} a^{7} + \frac{36242}{6075069} a^{6} + \frac{839305}{2209116} a^{5} + \frac{694721}{2209116} a^{4} - \frac{3735365}{12150138} a^{3} - \frac{2565469}{12150138} a^{2} + \frac{46225}{1157156} a - \frac{4363259}{24300276}$, $\frac{1}{137854013674700658301664113613427653358365989843284} a^{14} - \frac{2262880731484295659899568012456283356442659}{137854013674700658301664113613427653358365989843284} a^{13} + \frac{10794828428694254383756114419271035291985385907}{22975668945783443050277352268904608893060998307214} a^{12} - \frac{15353303737541835518268512852097873124306921387}{68927006837350329150832056806713826679182994921642} a^{11} + \frac{20811967830694073128271285635895747901560799383}{137854013674700658301664113613427653358365989843284} a^{10} - \frac{2537338447513530615058430552153454132569836298329}{8109059627923568135392006683142803138727411167252} a^{9} + \frac{419284121617101254951358318871497654891090791252}{1641119210413103075019810876350329206647214164801} a^{8} + \frac{3917171819702653019991338198945950766124811500674}{11487834472891721525138676134452304446530499153607} a^{7} - \frac{21785639760285120093314476402255877822135067259969}{137854013674700658301664113613427653358365989843284} a^{6} - \frac{15293964681714219356370047175265753385348409073105}{137854013674700658301664113613427653358365989843284} a^{5} + \frac{538313542689376616061412096458812121539656934098}{34463503418675164575416028403356913339591497460821} a^{4} - \frac{712962288594981177286571234295627809230345935065}{3133045765334105870492366218486992121781045223711} a^{3} + \frac{63204456554607863319511694935407204642063814353755}{137854013674700658301664113613427653358365989843284} a^{2} - \frac{2967872016114442709526458623970032664966983514641}{8109059627923568135392006683142803138727411167252} a - \frac{12991908892504559948542399399706929154120001552410}{34463503418675164575416028403356913339591497460821}$
Class group and class number
$C_{2}\times C_{10}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29832795961851.938 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.7800.1, 5.1.115672050000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{5}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.19.1 | $x^{10} - 2$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.15.17.3 | $x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10$ | $15$ | $1$ | $17$ | $F_5 \times S_3$ | $[5/4]_{12}^{2}$ |
| $13$ | 13.5.4.1 | $x^{5} - 13$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 13.10.9.2 | $x^{10} + 26$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |