Normalized defining polynomial
\( x^{15} - 5 x^{14} + 60 x^{13} - 370 x^{12} + 1945 x^{11} - 10297 x^{10} + 42250 x^{9} - 178520 x^{8} + 856800 x^{7} - 2144000 x^{6} + 4659456 x^{5} - 404560 x^{4} + 10719680 x^{3} - 15785600 x^{2} + 89744320 x + 4649536 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-305908393993716440346185189875000000000000=-\,2^{12}\cdot 5^{15}\cdot 11^{13}\cdot 19^{5}\cdot 31^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $583.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 19, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5}$, $\frac{1}{88} a^{10} - \frac{1}{8} a^{9} + \frac{3}{44} a^{8} - \frac{1}{4} a^{7} + \frac{21}{88} a^{6} - \frac{1}{8} a^{5} + \frac{3}{22} a^{4} - \frac{1}{2} a^{3} + \frac{2}{11} a^{2} + \frac{4}{11}$, $\frac{1}{176} a^{11} - \frac{1}{176} a^{10} - \frac{1}{11} a^{9} - \frac{3}{88} a^{8} - \frac{23}{176} a^{7} - \frac{21}{176} a^{6} - \frac{5}{88} a^{5} - \frac{3}{44} a^{4} - \frac{9}{22} a^{3} - \frac{1}{11} a^{2} - \frac{7}{22} a - \frac{2}{11}$, $\frac{1}{176} a^{12} - \frac{1}{176} a^{10} - \frac{1}{8} a^{9} - \frac{21}{176} a^{8} - \frac{1}{4} a^{7} + \frac{41}{176} a^{6} - \frac{1}{8} a^{5} + \frac{5}{44} a^{4} - \frac{1}{2} a^{3} - \frac{5}{11} a^{2} - \frac{1}{2} a - \frac{3}{11}$, $\frac{1}{352} a^{13} - \frac{1}{352} a^{12} - \frac{1}{176} a^{10} - \frac{15}{352} a^{9} + \frac{3}{352} a^{8} - \frac{13}{176} a^{7} - \frac{1}{22} a^{6} + \frac{1}{11} a^{5} - \frac{7}{44} a^{4} - \frac{19}{44} a^{3} - \frac{9}{22} a^{2} + \frac{5}{11} a + \frac{4}{11}$, $\frac{1}{5027237252828086718347244390752543720352} a^{14} + \frac{5649008783486880425122380848016313753}{5027237252828086718347244390752543720352} a^{13} - \frac{2936860560885275957822533326181593509}{1256809313207021679586811097688135930088} a^{12} - \frac{1082028182729905690573952690397174729}{1256809313207021679586811097688135930088} a^{11} - \frac{905982737832658333659982889497503767}{173353008718209886839560151405260128288} a^{10} + \frac{55324288845411194275343476953462996381}{5027237252828086718347244390752543720352} a^{9} + \frac{133365623079190520680539688675456446905}{2513618626414043359173622195376271860176} a^{8} - \frac{25700759322744591296685869605747162097}{228510784219458487197602017761479260016} a^{7} - \frac{303250522742244877513749839556956370665}{1256809313207021679586811097688135930088} a^{6} + \frac{251138009137097420385825243282723822943}{1256809313207021679586811097688135930088} a^{5} + \frac{15680147942967419961013465099251794122}{157101164150877709948351387211016991261} a^{4} + \frac{55108993178064352772729823507992184630}{157101164150877709948351387211016991261} a^{3} + \frac{100620962890047002434128599076564799691}{314202328301755419896702774422033982522} a^{2} + \frac{11718105302785616459445835297829285020}{157101164150877709948351387211016991261} a - \frac{1330280408314774922765465044228041426}{157101164150877709948351387211016991261}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 162220877031922.56 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.6479.1, 5.1.732050000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.15.15.40 | $x^{15} + 10 x^{14} + 5 x^{13} + 20 x^{12} + 20 x^{11} + 17 x^{10} + 10 x^{9} + 15 x^{8} + 12 x^{5} + 15 x^{3} + 10 x^{2} + 20 x + 17$ | $5$ | $3$ | $15$ | $F_5\times C_3$ | $[5/4]_{4}^{3}$ |
| $11$ | 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.9.5 | $x^{10} - 8019$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |