Normalized defining polynomial
\( x^{15} - 5 x^{14} - 15 x^{13} + 140 x^{12} - 95 x^{11} - 1273 x^{10} + 3015 x^{9} + 6270 x^{8} - 49345 x^{7} + 84935 x^{6} - 32349 x^{5} + 143020 x^{4} - 328340 x^{3} + 382390 x^{2} - 154970 x + 364550 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-29997949942318842441880000000000=-\,2^{12}\cdot 5^{10}\cdot 13^{13}\cdot 19^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $125.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{4}$, $\frac{1}{65} a^{10} + \frac{3}{65} a^{9} - \frac{1}{65} a^{8} + \frac{1}{65} a^{7} - \frac{21}{65} a^{6} + \frac{12}{65} a^{5} - \frac{28}{65} a^{4} - \frac{6}{13} a^{3} - \frac{5}{13} a^{2} - \frac{6}{13} a + \frac{6}{13}$, $\frac{1}{65} a^{11} + \frac{3}{65} a^{9} + \frac{4}{65} a^{8} - \frac{24}{65} a^{7} + \frac{2}{13} a^{6} + \frac{1}{65} a^{5} + \frac{2}{65} a^{4} - \frac{4}{13} a^{2} - \frac{2}{13} a - \frac{5}{13}$, $\frac{1}{325} a^{12} + \frac{2}{325} a^{11} + \frac{1}{325} a^{10} + \frac{6}{65} a^{9} + \frac{1}{13} a^{8} - \frac{79}{325} a^{7} + \frac{37}{325} a^{6} + \frac{71}{325} a^{5} + \frac{12}{65} a^{4} - \frac{31}{65} a^{3} + \frac{16}{65} a + \frac{6}{13}$, $\frac{1}{325} a^{13} + \frac{2}{325} a^{11} - \frac{2}{325} a^{10} + \frac{4}{65} a^{9} - \frac{14}{325} a^{8} - \frac{4}{65} a^{7} + \frac{92}{325} a^{6} + \frac{148}{325} a^{5} + \frac{24}{65} a^{4} - \frac{18}{65} a^{3} + \frac{16}{65} a^{2} - \frac{27}{65} a - \frac{1}{13}$, $\frac{1}{2699138904882592696818967020725} a^{14} + \frac{675805552653382912619513074}{539827780976518539363793404145} a^{13} + \frac{3252303361775935662159141506}{2699138904882592696818967020725} a^{12} + \frac{20746920678914104814561408551}{2699138904882592696818967020725} a^{11} - \frac{14622604979386432304184077426}{2699138904882592696818967020725} a^{10} - \frac{213331261518171519586377978609}{2699138904882592696818967020725} a^{9} - \frac{20573006671483993323515455191}{539827780976518539363793404145} a^{8} + \frac{852424632097731667923730067731}{2699138904882592696818967020725} a^{7} - \frac{69472095281476217582923929753}{207626069606353284370689770825} a^{6} - \frac{55145725597784973295795984691}{2699138904882592696818967020725} a^{5} + \frac{91113392142041374743828140356}{539827780976518539363793404145} a^{4} - \frac{155261961474571632746789336768}{539827780976518539363793404145} a^{3} - \frac{19416786289033583920858121467}{539827780976518539363793404145} a^{2} - \frac{141150415715913554160896004691}{539827780976518539363793404145} a - \frac{44997829385140682521081002955}{107965556195303707872758680829}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17265952420.66845 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.1235.1, 5.1.57122000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.5.4.1 | $x^{5} - 13$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 13.10.9.1 | $x^{10} - 13$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |