Normalized defining polynomial
\( x^{15} - x^{14} + 5 x^{13} + 5 x^{12} + 20 x^{11} + 22 x^{10} + 57 x^{9} + 461 x^{8} + 85 x^{7} - 31 x^{6} - 376 x^{5} + 56 x^{4} + 336 x^{3} - 64 x^{2} - 128 x + 64 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-29155999981005449978939=-\,1619^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1619$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{16} a^{4} + \frac{3}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{3}{16} a^{7} - \frac{3}{16} a^{6} + \frac{7}{32} a^{5} + \frac{7}{32} a^{4} - \frac{5}{16} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{416} a^{12} - \frac{3}{208} a^{11} - \frac{1}{32} a^{10} - \frac{1}{208} a^{9} + \frac{3}{208} a^{8} - \frac{1}{26} a^{7} + \frac{49}{416} a^{6} + \frac{9}{52} a^{5} + \frac{1}{32} a^{4} - \frac{23}{52} a^{3} + \frac{1}{4} a^{2} - \frac{7}{52} a + \frac{6}{13}$, $\frac{1}{5824} a^{13} - \frac{1}{2912} a^{12} + \frac{41}{5824} a^{11} - \frac{33}{1456} a^{10} - \frac{53}{2912} a^{9} + \frac{1}{728} a^{8} + \frac{141}{5824} a^{7} - \frac{129}{728} a^{6} - \frac{193}{5824} a^{5} - \frac{313}{2912} a^{4} - \frac{535}{1456} a^{3} + \frac{71}{728} a^{2} - \frac{145}{364} a + \frac{37}{182}$, $\frac{1}{1198625792} a^{14} - \frac{18723}{599312896} a^{13} + \frac{1230419}{1198625792} a^{12} + \frac{5949763}{599312896} a^{11} + \frac{11764899}{599312896} a^{10} + \frac{8055147}{149828224} a^{9} + \frac{5376279}{171232256} a^{8} - \frac{17876723}{149828224} a^{7} - \frac{165448515}{1198625792} a^{6} + \frac{10727007}{74914112} a^{5} - \frac{968427}{11525248} a^{4} + \frac{185265}{74914112} a^{3} + \frac{1461529}{4682132} a^{2} + \frac{3029877}{18728528} a + \frac{6250957}{18728528}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1363950.18144 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 30 |
| The 9 conjugacy class representatives for $D_{15}$ |
| Character table for $D_{15}$ |
Intermediate fields
| 3.1.1619.1, 5.1.2621161.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1619 | Data not computed | ||||||