Normalized defining polynomial
\( x^{15} - x^{14} + 203 x^{13} + 249 x^{12} + 14443 x^{11} + 27391 x^{10} + 434633 x^{9} + 784389 x^{8} + 4734027 x^{7} + 2940961 x^{6} - 15645211 x^{5} - 122910997 x^{4} - 309285975 x^{3} - 271954775 x^{2} + 1392333871 x + 4737567935 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2890088708537260245720054366720000000000=-\,2^{18}\cdot 3^{13}\cdot 5^{10}\cdot 11^{13}\cdot 29^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $427.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{10} a^{4} + \frac{3}{10} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{8} - \frac{1}{10} a^{6} - \frac{1}{5} a^{5} - \frac{1}{2} a^{4} - \frac{2}{5} a^{3} - \frac{3}{10} a^{2} - \frac{1}{5} a$, $\frac{1}{20} a^{9} - \frac{1}{20} a^{8} - \frac{1}{5} a^{6} - \frac{1}{2} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{3}{20} a - \frac{1}{4}$, $\frac{1}{3300} a^{10} + \frac{1}{220} a^{9} + \frac{7}{330} a^{8} - \frac{17}{550} a^{7} - \frac{104}{825} a^{6} - \frac{48}{275} a^{5} - \frac{277}{825} a^{4} + \frac{69}{550} a^{3} + \frac{107}{3300} a^{2} + \frac{191}{1100} a + \frac{23}{330}$, $\frac{1}{3300} a^{11} + \frac{1}{330} a^{9} + \frac{1}{1100} a^{8} + \frac{31}{825} a^{7} + \frac{9}{550} a^{6} + \frac{68}{825} a^{5} + \frac{127}{275} a^{4} - \frac{493}{3300} a^{3} - \frac{117}{550} a^{2} + \frac{1}{66} a - \frac{13}{44}$, $\frac{1}{33000} a^{12} - \frac{1}{8250} a^{10} - \frac{31}{2750} a^{9} + \frac{1289}{33000} a^{8} - \frac{69}{2750} a^{7} + \frac{144}{1375} a^{6} + \frac{579}{2750} a^{5} - \frac{10721}{33000} a^{4} + \frac{641}{2750} a^{3} + \frac{809}{4125} a^{2} + \frac{512}{1375} a - \frac{2129}{6600}$, $\frac{1}{33000} a^{13} - \frac{1}{8250} a^{11} - \frac{1}{16500} a^{10} + \frac{239}{33000} a^{9} - \frac{166}{4125} a^{8} - \frac{107}{2750} a^{7} - \frac{634}{4125} a^{6} + \frac{7159}{33000} a^{5} + \frac{1279}{4125} a^{4} + \frac{313}{8250} a^{3} + \frac{7789}{16500} a^{2} - \frac{3287}{6600} a + \frac{13}{165}$, $\frac{1}{1883935260100296871783517397182329287495000} a^{14} - \frac{851048282424876725819575092661563889}{171266841827299715616683399743848117045000} a^{13} + \frac{2065397073605056567167029527133441251}{188393526010029687178351739718232928749500} a^{12} - \frac{42785231430612378264769545009477626449}{470983815025074217945879349295582321873750} a^{11} - \frac{134498872190703398568722207968237510399}{1883935260100296871783517397182329287495000} a^{10} + \frac{43487709387921963003544574628183683092133}{1883935260100296871783517397182329287495000} a^{9} - \frac{3909169139264853707998138286807496537317}{104663070005572048432417633176796071527500} a^{8} + \frac{2095354387867871149923365058544655848813}{78497302504179036324313224882597053645625} a^{7} + \frac{85813262801227648284715379596709649005477}{627978420033432290594505799060776429165000} a^{6} + \frac{444087875499286177415561338659103549975063}{1883935260100296871783517397182329287495000} a^{5} - \frac{18081858851716342000157300832252703478279}{188393526010029687178351739718232928749500} a^{4} + \frac{71115708055603671395173317314222198487116}{235491907512537108972939674647791160936875} a^{3} - \frac{380029917981967775661959991075017855537149}{1883935260100296871783517397182329287495000} a^{2} - \frac{522639392145509912556306218065244867765773}{1883935260100296871783517397182329287495000} a + \frac{55450777846256027384738197937281716549887}{188393526010029687178351739718232928749500}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24048739853778.793 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.19140.1, 5.1.2371842000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | R | $15$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.9.5 | $x^{10} - 8019$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |