Normalized defining polynomial
\( x^{15} - 3 x^{14} + 3 x^{13} - x^{12} - 425 x^{11} + 693 x^{10} + 7789 x^{9} - 6982 x^{8} + 12820 x^{7} - 13720 x^{6} - 246544 x^{5} + 179744 x^{4} + 961600 x^{3} - 477440 x^{2} + 76800 x - 4096 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-27100824264108518067277197633767=-\,11^{4}\cdot 17^{2}\cdot 23^{5}\cdot 997556191^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $124.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 17, 23, 997556191$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{12} a^{8} - \frac{1}{12} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{5}{12} a^{4} - \frac{5}{12} a^{3} - \frac{1}{12} a^{2} + \frac{1}{3} a$, $\frac{1}{24} a^{9} - \frac{1}{24} a^{8} + \frac{1}{24} a^{7} - \frac{7}{24} a^{6} - \frac{7}{24} a^{5} + \frac{7}{24} a^{4} - \frac{5}{24} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{48} a^{10} - \frac{1}{48} a^{9} + \frac{1}{48} a^{8} + \frac{1}{48} a^{7} + \frac{3}{16} a^{6} + \frac{7}{48} a^{5} - \frac{5}{48} a^{4} + \frac{1}{12} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{96} a^{11} - \frac{1}{96} a^{10} + \frac{1}{96} a^{9} + \frac{1}{96} a^{8} - \frac{7}{96} a^{7} - \frac{25}{96} a^{6} - \frac{5}{96} a^{5} - \frac{1}{2} a^{4} + \frac{5}{24} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{192} a^{12} - \frac{1}{192} a^{11} + \frac{1}{192} a^{10} + \frac{1}{192} a^{9} - \frac{7}{192} a^{8} + \frac{7}{192} a^{7} - \frac{37}{192} a^{6} - \frac{1}{4} a^{5} + \frac{5}{48} a^{4} - \frac{1}{12} a^{3} - \frac{1}{12} a^{2} - \frac{1}{3}$, $\frac{1}{16896} a^{13} - \frac{9}{5632} a^{12} - \frac{23}{5632} a^{11} - \frac{25}{16896} a^{10} - \frac{43}{5632} a^{9} - \frac{35}{16896} a^{8} - \frac{571}{16896} a^{7} + \frac{11}{768} a^{6} - \frac{113}{384} a^{5} - \frac{249}{704} a^{4} - \frac{109}{1056} a^{3} + \frac{101}{528} a^{2} + \frac{27}{88} a - \frac{1}{66}$, $\frac{1}{1050336477022818301341696} a^{14} + \frac{9352930922570068033}{1050336477022818301341696} a^{13} - \frac{429672868094882706233}{1050336477022818301341696} a^{12} - \frac{223560825875977605949}{116704053002535366815744} a^{11} - \frac{6695770879855386695549}{1050336477022818301341696} a^{10} - \frac{10931220690447228233087}{1050336477022818301341696} a^{9} + \frac{14088864372727706985905}{1050336477022818301341696} a^{8} + \frac{5678943641506817927903}{525168238511409150670848} a^{7} - \frac{1351712854265832809975}{23871283568700415939584} a^{6} - \frac{3388611260717279150767}{6910108401465909877248} a^{5} + \frac{18203582561313804605}{1151684733577651646208} a^{4} + \frac{1451305501623918186929}{2983910446087551992448} a^{3} + \frac{7441261907777163677}{165772802560419555136} a^{2} + \frac{156485008650989633651}{2051438431685191994808} a + \frac{374556712012554153985}{1025719215842595997404}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8571116531.23 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6000 |
| The 40 conjugacy class representatives for [D(5)^3]S(3)=D(5)wrS(3) |
| Character table for [D(5)^3]S(3)=D(5)wrS(3) is not computed |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | $15$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 997556191 | Data not computed | ||||||