Normalized defining polynomial
\( x^{15} - 5 x^{14} + 20 x^{12} + 25 x^{11} + 10769 x^{10} - 36230 x^{9} + 180490 x^{8} + 505680 x^{7} - 1263140 x^{6} + 40460928 x^{5} - 62922700 x^{4} + 648860840 x^{3} - 1694606600 x^{2} + 1630311940 x + 46251096148 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2628311466391066187500000000000000000000000=-\,2^{23}\cdot 5^{27}\cdot 19^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $672.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{19} a^{6} + \frac{9}{19} a^{5} - \frac{2}{19} a^{3} + \frac{7}{19} a - \frac{7}{19}$, $\frac{1}{19} a^{7} - \frac{5}{19} a^{5} - \frac{2}{19} a^{4} - \frac{1}{19} a^{3} + \frac{7}{19} a^{2} + \frac{6}{19} a + \frac{6}{19}$, $\frac{1}{19} a^{8} + \frac{5}{19} a^{5} - \frac{1}{19} a^{4} - \frac{3}{19} a^{3} + \frac{6}{19} a^{2} + \frac{3}{19} a + \frac{3}{19}$, $\frac{1}{19} a^{9} - \frac{8}{19} a^{5} - \frac{3}{19} a^{4} - \frac{3}{19} a^{3} + \frac{3}{19} a^{2} + \frac{6}{19} a - \frac{3}{19}$, $\frac{1}{722} a^{10} + \frac{15}{722} a^{9} - \frac{6}{361} a^{8} - \frac{2}{361} a^{7} + \frac{1}{722} a^{6} + \frac{89}{722} a^{5} + \frac{176}{361} a^{4} - \frac{105}{361} a^{3} + \frac{61}{361} a^{2} + \frac{26}{361} a + \frac{144}{361}$, $\frac{1}{722} a^{11} - \frac{9}{722} a^{9} - \frac{7}{361} a^{8} - \frac{15}{722} a^{7} - \frac{1}{361} a^{6} + \frac{271}{722} a^{5} - \frac{28}{361} a^{4} - \frac{112}{361} a^{3} + \frac{61}{361} a^{2} + \frac{20}{361} a + \frac{139}{361}$, $\frac{1}{722} a^{12} + \frac{7}{722} a^{9} - \frac{9}{722} a^{8} + \frac{7}{361} a^{6} - \frac{357}{722} a^{5} + \frac{104}{361} a^{4} + \frac{85}{361} a^{3} + \frac{151}{361} a^{2} + \frac{107}{361} a + \frac{156}{361}$, $\frac{1}{13718} a^{13} + \frac{3}{13718} a^{12} + \frac{4}{6859} a^{11} - \frac{1}{6859} a^{10} + \frac{337}{13718} a^{9} - \frac{145}{13718} a^{8} + \frac{98}{6859} a^{7} - \frac{94}{6859} a^{6} + \frac{24}{6859} a^{5} - \frac{974}{6859} a^{4} + \frac{1348}{6859} a^{3} + \frac{2247}{6859} a^{2} - \frac{3340}{6859} a - \frac{2946}{6859}$, $\frac{1}{15076062440602894794551941367075839849349603644} a^{14} + \frac{200956078046508453910445927288433358551179}{15076062440602894794551941367075839849349603644} a^{13} + \frac{3728054414133214841162843222686874027320877}{7538031220301447397275970683537919924674801822} a^{12} + \frac{72161907804594449708334604100227432421794}{198369242639511773612525544303629471701968469} a^{11} + \frac{4285968976959595805282845803658786017908435}{15076062440602894794551941367075839849349603644} a^{10} + \frac{204024899696702931651536924756825550646999655}{15076062440602894794551941367075839849349603644} a^{9} + \frac{67730626487551428022706084118568335007626275}{7538031220301447397275970683537919924674801822} a^{8} - \frac{37027700780450614991521820999917328598350333}{7538031220301447397275970683537919924674801822} a^{7} - \frac{180731523209755028326702676571629050380885821}{7538031220301447397275970683537919924674801822} a^{6} - \frac{1233898089160419280676383876211224563277107745}{7538031220301447397275970683537919924674801822} a^{5} - \frac{3022692590431073415268849647667206687059812953}{7538031220301447397275970683537919924674801822} a^{4} - \frac{432916126552077459073748183236463038769924}{198369242639511773612525544303629471701968469} a^{3} - \frac{1324559884123184692597651730752485208215324186}{3769015610150723698637985341768959962337400911} a^{2} - \frac{20043864718683981108917797005278080910249140}{198369242639511773612525544303629471701968469} a + \frac{895877573068481636117579690552264109164139767}{3769015610150723698637985341768959962337400911}$
Class group and class number
$C_{2}\times C_{10}\times C_{20}$, which has order $400$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9655767972734.52 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.152.1, 5.1.4072531250000.23 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.19.17 | $x^{10} - 2 x^{4} + 4 x^{2} - 10$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $5$ | 5.5.9.5 | $x^{5} + 105$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ |
| 5.10.18.5 | $x^{10} + 10 x^{8} + 40 x^{6} + 85 x^{5} + 80 x^{4} - 75 x^{3} + 80 x^{2} + 75 x + 57$ | $5$ | $2$ | $18$ | $F_{5}\times C_2$ | $[9/4]_{4}^{2}$ | |
| $19$ | 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ |
| 19.10.9.1 | $x^{10} - 19$ | $10$ | $1$ | $9$ | $D_{10}$ | $[\ ]_{10}^{2}$ |