Normalized defining polynomial
\( x^{15} - 5 x^{14} - 45 x^{13} + 135 x^{12} + 1185 x^{11} + 1086 x^{10} - 22575 x^{9} + 75600 x^{8} + 767775 x^{7} - 71525 x^{6} + 2047624 x^{5} + 13641630 x^{4} + 69494445 x^{3} - 277582410 x^{2} + 519196590 x - 280715886 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2581452668046920778582615126630000000000=-\,2^{10}\cdot 3^{13}\cdot 5^{10}\cdot 61^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $424.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{15} a^{8} + \frac{1}{15} a^{6} - \frac{1}{3} a^{5} + \frac{2}{5} a^{4} - \frac{1}{3} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{15} a^{9} + \frac{1}{15} a^{7} + \frac{2}{5} a^{5} - \frac{1}{3} a^{4} - \frac{4}{15} a^{3} + \frac{2}{5} a$, $\frac{1}{30195} a^{10} + \frac{196}{6039} a^{9} + \frac{166}{30195} a^{8} - \frac{805}{6039} a^{7} - \frac{4069}{30195} a^{6} + \frac{1043}{6039} a^{5} - \frac{2878}{10065} a^{4} - \frac{131}{671} a^{3} + \frac{214}{3355} a^{2} + \frac{1}{671} a - \frac{28}{61}$, $\frac{1}{30195} a^{11} - \frac{1}{915} a^{9} + \frac{34}{2745} a^{8} - \frac{31}{915} a^{7} + \frac{31}{305} a^{6} - \frac{1123}{2745} a^{5} - \frac{97}{915} a^{4} - \frac{131}{915} a^{3} - \frac{94}{305} a^{2} - \frac{401}{3355} a + \frac{11}{305}$, $\frac{1}{150975} a^{12} + \frac{2}{150975} a^{11} + \frac{1}{150975} a^{10} + \frac{284}{30195} a^{9} - \frac{134}{30195} a^{8} + \frac{614}{30195} a^{7} + \frac{1367}{10065} a^{6} + \frac{1103}{10065} a^{5} - \frac{186}{3355} a^{4} - \frac{602}{10065} a^{3} + \frac{71}{1525} a^{2} + \frac{1502}{16775} a - \frac{529}{1525}$, $\frac{1}{45745425} a^{13} - \frac{17}{9149085} a^{12} - \frac{293}{45745425} a^{11} + \frac{293}{45745425} a^{10} + \frac{303542}{9149085} a^{9} - \frac{2624}{149985} a^{8} + \frac{1514972}{9149085} a^{7} + \frac{280321}{9149085} a^{6} + \frac{1909487}{9149085} a^{5} - \frac{1330088}{3049695} a^{4} + \frac{94467}{1694275} a^{3} + \frac{263597}{1016565} a^{2} - \frac{1073233}{5082825} a - \frac{88162}{462075}$, $\frac{1}{339611968928518136017311466607175} a^{14} + \frac{1051018889849294002837972}{339611968928518136017311466607175} a^{13} - \frac{116322286784275647558781973}{67922393785703627203462293321435} a^{12} - \frac{1589679653841230506452030347}{339611968928518136017311466607175} a^{11} + \frac{898099184353085335415377589}{339611968928518136017311466607175} a^{10} + \frac{1442443089088321188795090942524}{67922393785703627203462293321435} a^{9} + \frac{2028067389301266576972442669231}{67922393785703627203462293321435} a^{8} + \frac{11157242606009519774332014609149}{67922393785703627203462293321435} a^{7} - \frac{10932922020962194284739607372639}{67922393785703627203462293321435} a^{6} - \frac{21137473721065971392599942126376}{67922393785703627203462293321435} a^{5} + \frac{38148419214442310167805930717218}{113203989642839378672437155535725} a^{4} - \frac{4906109480836124716744465633776}{12578221071426597630270795059525} a^{3} - \frac{2892582376899088283340132005734}{7546932642855958578162477035715} a^{2} + \frac{1628339911451620068909470861683}{3430423928570890262801125925325} a + \frac{143588189491765968992877607319}{311856720779171842072829629575}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40164614069800.03 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.3660.1, 5.1.140189140125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $61$ | 61.5.4.3 | $x^{5} - 244$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 61.10.9.2 | $x^{10} - 244$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |