Normalized defining polynomial
\( x^{15} - 5 x^{14} + 145 x^{13} - 370 x^{12} + 7385 x^{11} + 377 x^{10} + 165195 x^{9} + 114930 x^{8} + 88155 x^{7} + 27605475 x^{6} + 15925923 x^{5} + 438449760 x^{4} - 1007584920 x^{3} + 5251526460 x^{2} - 2872916100 x + 13217245308 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-244029338779125043943806918241370375000000000000=-\,2^{12}\cdot 3^{12}\cdot 5^{15}\cdot 7^{13}\cdot 2069^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1442.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 2069$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4}$, $\frac{1}{18} a^{9} - \frac{1}{18} a^{8} - \frac{1}{18} a^{6} - \frac{1}{9} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3}$, $\frac{1}{378} a^{10} + \frac{1}{54} a^{9} + \frac{8}{189} a^{8} + \frac{5}{54} a^{7} + \frac{19}{189} a^{6} - \frac{1}{54} a^{5} - \frac{5}{42} a^{4} - \frac{1}{3} a^{3} + \frac{1}{7} a^{2} - \frac{3}{7}$, $\frac{1}{1134} a^{11} + \frac{1}{1134} a^{10} + \frac{8}{567} a^{9} + \frac{23}{1134} a^{8} - \frac{86}{567} a^{7} + \frac{101}{1134} a^{6} - \frac{29}{378} a^{5} + \frac{8}{63} a^{4} - \frac{2}{7} a^{3} + \frac{8}{21} a^{2} + \frac{4}{21} a - \frac{1}{7}$, $\frac{1}{1134} a^{12} + \frac{2}{81} a^{9} - \frac{19}{378} a^{8} - \frac{64}{567} a^{6} - \frac{1}{27} a^{5} - \frac{5}{126} a^{4} - \frac{1}{3} a^{3} + \frac{2}{21} a^{2} - \frac{1}{3} a + \frac{2}{7}$, $\frac{1}{3402} a^{13} + \frac{1}{3402} a^{12} + \frac{1}{3402} a^{11} - \frac{1}{3402} a^{10} + \frac{46}{1701} a^{9} + \frac{179}{3402} a^{8} - \frac{5}{189} a^{7} - \frac{65}{567} a^{6} - \frac{26}{189} a^{5} - \frac{1}{126} a^{3} + \frac{5}{21} a^{2} + \frac{1}{21} a + \frac{1}{7}$, $\frac{1}{2068891450144735182120065503340166886121297400246} a^{14} + \frac{90418215335804463904315555325884353503407127}{2068891450144735182120065503340166886121297400246} a^{13} + \frac{282279531237634639897141558899263127246431641}{1034445725072367591060032751670083443060648700123} a^{12} + \frac{22597368173455804359764297941366529925076096}{344815241690789197020010917223361147686882900041} a^{11} - \frac{2705620488991936242857295860712661578433470305}{2068891450144735182120065503340166886121297400246} a^{10} + \frac{35926346770678054631548320041525775387648146539}{2068891450144735182120065503340166886121297400246} a^{9} - \frac{7437272207439099213157778901613534345219821446}{1034445725072367591060032751670083443060648700123} a^{8} - \frac{2205758951372442895046199285726093344445006542}{16419773413847104620000519867779102270803947621} a^{7} - \frac{11072548322025733312768788556543698554555086379}{229876827793859464680007278148907431791255266694} a^{6} - \frac{3454424257643316800851679740044816194509858231}{229876827793859464680007278148907431791255266694} a^{5} - \frac{600074405903971925433087817434163369364682445}{4256978292478878975555690336090878366504727161} a^{4} + \frac{5757214895753266813876106048295935672650141813}{38312804632309910780001213024817905298542544449} a^{3} - \frac{4702499130926508557382126563052199726917756253}{12770934877436636926667071008272635099514181483} a^{2} - \frac{652723883331181516740327975631290781949234925}{4256978292478878975555690336090878366504727161} a + \frac{171359819804876893657584552641318181692406037}{4256978292478878975555690336090878366504727161}$
Class group and class number
$C_{5}\times C_{40}$, which has order $200$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16856432353285514 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.14483.1, 5.1.9724050000.9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | $15$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.5.5.2 | $x^{5} + 5 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.10.7 | $x^{10} + 10 x^{8} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 12$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| $7$ | 7.5.4.1 | $x^{5} - 7$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 7.10.9.2 | $x^{10} + 14$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| 2069 | Data not computed | ||||||