Normalized defining polynomial
\( x^{15} + 105 x^{13} - 5640 x^{12} - 157785 x^{11} + 1914312 x^{10} + 332396675 x^{9} - 2590483680 x^{8} - 83929544010 x^{7} - 85198013200 x^{6} + 3532946629590 x^{5} - 2532704653800 x^{4} - 265590632403700 x^{3} - 1765231283268600 x^{2} - 5044667439936000 x - 6241061091507200 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2290959479641121893981744591147824672000000000000000000=-\,2^{23}\cdot 3^{20}\cdot 5^{18}\cdot 1459^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $4207.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 1459$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{14590} a^{10} + \frac{21}{2918} a^{8} - \frac{564}{1459} a^{7} + \frac{541}{2918} a^{6} + \frac{1511}{7295} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{14590} a^{11} + \frac{21}{2918} a^{9} + \frac{331}{2918} a^{8} + \frac{541}{2918} a^{7} + \frac{1511}{7295} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{29180} a^{12} - \frac{1}{29180} a^{10} - \frac{282}{1459} a^{9} + \frac{1233}{5836} a^{8} + \frac{668}{7295} a^{7} + \frac{2473}{5836} a^{6} + \frac{162}{7295} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{58360} a^{13} + \frac{1}{58360} a^{11} + \frac{1275}{11672} a^{9} - \frac{1}{7295} a^{8} - \frac{2961}{11672} a^{7} + \frac{219}{7295} a^{6} + \frac{1755}{5836} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{158889809863541317439563268599342967697949472290082502140716820608065703939964733072320} a^{14} + \frac{15803566120208546617583507569956412106396521140137260467847923897216903301357895}{1986122623294266467994540857491787096224368403626031276758960257600821299249559163404} a^{13} - \frac{21332784675010656337187263958155202228419535618403122915898433576318010868020169}{5125477737533590885147202212882031216062886202905887165829574858324700127095636550720} a^{12} - \frac{121119738823627330449003692337351121353946243815118474177133072626835563886722599}{3972245246588532935989081714983574192448736807252062553517920515201642598499118326808} a^{11} - \frac{3222894105136239274532073927903832969148181041892083861081795453729796769141679193}{158889809863541317439563268599342967697949472290082502140716820608065703939964733072320} a^{10} - \frac{1035507217746382031134371055844373356256173508339313503432230133383400721063274323901}{19861226232942664679945408574917870962243684036260312767589602576008212992495591634040} a^{9} - \frac{5896708112075190411407812740667238595235772009900378314401394203690690506233200134649}{31777961972708263487912653719868593539589894458016500428143364121613140787992946614464} a^{8} + \frac{4637808523940180314870737130356287483100554216422110329917568369113197672205790373447}{9930613116471332339972704287458935481121842018130156383794801288004106496247795817020} a^{7} - \frac{1856755254178117226789602260900158510438085836585446931237373053275920794527232454497}{15888980986354131743956326859934296769794947229008250214071682060806570393996473307232} a^{6} - \frac{702615812900238343192349680712960662144185920203099404002469270168441344320737933233}{1418659016638761762853243469636990783017406002590022340542114469714872356606827973860} a^{5} + \frac{736972815536469737725837675668148967980786096865906404565794455159779047272210163}{1555760402071294599427820117490874059511891435328331559196287286870319239596247264} a^{4} + \frac{1078642800727434618549147180187994933367341320554927498331474502106095989376094065}{2722580703624765548998685205609029604145810011824580228593502752023058669293432712} a^{3} - \frac{615745414273204996720964856141862067422814684929996837592718926023175547493759139}{5445161407249531097997370411218059208291620023649160457187005504046117338586865424} a^{2} + \frac{1136673824762350521098531121943243309330046319385864673175796360923885713545243375}{2722580703624765548998685205609029604145810011824580228593502752023058669293432712} a + \frac{2823315271500987507275450923766672113803451506595303987411210438723234360412641}{48617512564727956232119378671589814359746607354010361224883977714697476237382727}$
Class group and class number
$C_{15}$, which has order $15$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6395084156450000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1500 |
| The 40 conjugacy class representatives for [5^3:2]S(3) |
| Character table for [5^3:2]S(3) is not computed |
Intermediate fields
| 3.1.648.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.5.6.2 | $x^{5} + 15 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ |
| 5.10.12.10 | $x^{10} + 10 x^{8} + 20 x^{7} + 15 x^{6} - 5 x^{5} + 5 x^{4} + 5 x^{2} - 5 x + 7$ | $5$ | $2$ | $12$ | $D_{10}$ | $[3/2]_{2}^{2}$ | |
| 1459 | Data not computed | ||||||