Properties

Label 15.1.22687111441...0000.1
Degree $15$
Signature $[1, 7]$
Discriminant $-\,2^{12}\cdot 5^{13}\cdot 23^{5}\cdot 89^{3}$
Root discriminant $49.02$
Ramified primes $2, 5, 23, 89$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T82

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4792, -12600, -15770, -1575, 12550, 11990, 500, -3385, -1700, 100, -250, 255, -10, 30, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 + 30*x^13 - 10*x^12 + 255*x^11 - 250*x^10 + 100*x^9 - 1700*x^8 - 3385*x^7 + 500*x^6 + 11990*x^5 + 12550*x^4 - 1575*x^3 - 15770*x^2 - 12600*x - 4792)
 
gp: K = bnfinit(x^15 + 30*x^13 - 10*x^12 + 255*x^11 - 250*x^10 + 100*x^9 - 1700*x^8 - 3385*x^7 + 500*x^6 + 11990*x^5 + 12550*x^4 - 1575*x^3 - 15770*x^2 - 12600*x - 4792, 1)
 

Normalized defining polynomial

\( x^{15} + 30 x^{13} - 10 x^{12} + 255 x^{11} - 250 x^{10} + 100 x^{9} - 1700 x^{8} - 3385 x^{7} + 500 x^{6} + 11990 x^{5} + 12550 x^{4} - 1575 x^{3} - 15770 x^{2} - 12600 x - 4792 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-22687111441835000000000000=-\,2^{12}\cdot 5^{13}\cdot 23^{5}\cdot 89^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.02$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 23, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4}$, $\frac{1}{16} a^{11} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4} + \frac{1}{16} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{8} + \frac{1}{16} a^{4}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} + \frac{1}{16} a^{7} - \frac{7}{32} a^{5} - \frac{1}{8} a^{4} - \frac{1}{32} a^{3} - \frac{7}{16} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{53864550425857210720} a^{14} - \frac{228921652102324131}{26932275212928605360} a^{13} - \frac{1332656086089709611}{53864550425857210720} a^{12} - \frac{9237662669793254}{1683267200808037835} a^{11} - \frac{1623459267370406787}{26932275212928605360} a^{10} - \frac{49010990029015031}{1683267200808037835} a^{9} + \frac{1252028522816212647}{26932275212928605360} a^{8} + \frac{896725358336592223}{13466137606464302680} a^{7} - \frac{5108357941502984239}{53864550425857210720} a^{6} - \frac{5319891803517998841}{26932275212928605360} a^{5} - \frac{5447195947763768691}{53864550425857210720} a^{4} - \frac{674789805855435547}{13466137606464302680} a^{3} + \frac{1807342572312864589}{13466137606464302680} a^{2} + \frac{1198412753235001561}{6733068803232151340} a - \frac{1046440404839872331}{3366534401616075670}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4624304.34444 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T82:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 48000
The 65 conjugacy class representatives for [F(5)^3]S(3)=F(5)wrS(3) are not computed
Character table for [F(5)^3]S(3)=F(5)wrS(3) is not computed

Intermediate fields

3.1.23.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 30 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ R ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{5}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ R ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.12.12.17$x^{12} + 22 x^{10} + 75 x^{8} - 12 x^{6} - 89 x^{4} + 54 x^{2} - 115$$2$$6$$12$12T29$[2, 2]^{12}$
$5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.4.3.4$x^{4} + 40$$4$$1$$3$$C_4$$[\ ]_{4}$
5.10.10.1$x^{10} + 10 x^{5} + 75 x^{2} + 25$$5$$2$$10$$C_5^2 : C_8$$[5/4, 5/4]_{4}^{2}$
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$89$$\Q_{89}$$x + 3$$1$$1$$0$Trivial$[\ ]$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.4.3.4$x^{4} + 2403$$4$$1$$3$$C_4$$[\ ]_{4}$
89.8.0.1$x^{8} - x + 62$$1$$8$$0$$C_8$$[\ ]^{8}$