Normalized defining polynomial
\( x^{15} - 5 x^{14} - 205 x^{13} + 2285 x^{12} + 11465 x^{11} - 292788 x^{10} + 818485 x^{9} + 14288760 x^{8} - 119368045 x^{7} - 8391805 x^{6} + 4295896648 x^{5} - 19651259480 x^{4} - 11485832055 x^{3} + 402491806260 x^{2} - 1460294354910 x + 1953811463264 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-219387435712728438617734525000000000000000=-\,2^{15}\cdot 5^{17}\cdot 11^{13}\cdot 191^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $570.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 191$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5}$, $\frac{1}{5} a^{6} - \frac{1}{5} a$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{3}$, $\frac{1}{25} a^{9} + \frac{1}{25} a^{8} + \frac{1}{25} a^{7} + \frac{1}{25} a^{6} + \frac{1}{25} a^{5} + \frac{9}{25} a^{4} + \frac{9}{25} a^{3} + \frac{9}{25} a^{2} + \frac{9}{25} a + \frac{9}{25}$, $\frac{1}{550} a^{10} + \frac{1}{55} a^{9} - \frac{7}{110} a^{8} + \frac{3}{55} a^{7} - \frac{2}{55} a^{6} - \frac{1}{25} a^{5} + \frac{19}{55} a^{4} + \frac{26}{55} a^{3} + \frac{19}{110} a^{2} - \frac{8}{55} a - \frac{127}{275}$, $\frac{1}{550} a^{11} - \frac{3}{550} a^{9} - \frac{19}{275} a^{8} + \frac{16}{275} a^{7} - \frac{2}{55} a^{6} - \frac{4}{275} a^{5} + \frac{49}{275} a^{4} - \frac{217}{550} a^{3} - \frac{31}{275} a^{2} - \frac{68}{275} a - \frac{61}{275}$, $\frac{1}{2750} a^{12} - \frac{1}{1375} a^{11} + \frac{1}{2750} a^{10} + \frac{3}{275} a^{9} - \frac{12}{275} a^{8} - \frac{26}{1375} a^{7} + \frac{97}{1375} a^{6} + \frac{24}{1375} a^{5} - \frac{221}{550} a^{4} + \frac{117}{275} a^{3} - \frac{212}{1375} a^{2} + \frac{454}{1375} a - \frac{12}{1375}$, $\frac{1}{2750} a^{13} + \frac{1}{1375} a^{11} + \frac{1}{1375} a^{10} - \frac{9}{550} a^{9} - \frac{101}{1375} a^{8} + \frac{23}{275} a^{7} + \frac{83}{1375} a^{6} - \frac{59}{2750} a^{5} - \frac{53}{275} a^{4} - \frac{149}{2750} a^{3} - \frac{68}{275} a^{2} - \frac{334}{1375} a - \frac{534}{1375}$, $\frac{1}{12180672305688935383701745050904611954581748730150250} a^{14} + \frac{5311324913707693697155740709050976981276646627}{2436134461137787076740349010180922390916349746030050} a^{13} + \frac{86258504995572984097964692069315788671551957706}{1218067230568893538370174505090461195458174873015025} a^{12} + \frac{9991200918951068527026780414012004283126889097711}{12180672305688935383701745050904611954581748730150250} a^{11} + \frac{8695142117110920580759034316256474402668944028663}{12180672305688935383701745050904611954581748730150250} a^{10} + \frac{120657249857734499387949254463515277422338214716609}{6090336152844467691850872525452305977290874365075125} a^{9} + \frac{27997666164938580381144195079929530954485470086003}{1218067230568893538370174505090461195458174873015025} a^{8} - \frac{94494398269609666033619459842860178147264922760302}{1218067230568893538370174505090461195458174873015025} a^{7} - \frac{1050117169817774215234119787952182022029608249276527}{12180672305688935383701745050904611954581748730150250} a^{6} - \frac{33330371668142154956853976078327607697616632149281}{1107333845971721398518340459173146541325613520922750} a^{5} - \frac{4397546740696003805272953266455516595337044324844119}{12180672305688935383701745050904611954581748730150250} a^{4} + \frac{402240717620987323519691259528836796910191729593546}{1218067230568893538370174505090461195458174873015025} a^{3} + \frac{309673264525681046818442426368949137514715338679671}{1218067230568893538370174505090461195458174873015025} a^{2} - \frac{2234823280806746250351870500649093310491909510994292}{6090336152844467691850872525452305977290874365075125} a - \frac{2333682772596455315714807195004479253660554538024886}{6090336152844467691850872525452305977290874365075125}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 80177251366909.72 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.420200.1, 5.1.45753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $5$ | 5.15.17.3 | $x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10$ | $15$ | $1$ | $17$ | $F_5 \times S_3$ | $[5/4]_{12}^{2}$ |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $191$ | $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 191.2.1.1 | $x^{2} - 191$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 191.2.1.1 | $x^{2} - 191$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 191.2.1.1 | $x^{2} - 191$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 191.2.1.1 | $x^{2} - 191$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 191.2.1.1 | $x^{2} - 191$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |