Normalized defining polynomial
\( x^{15} - 5 x^{14} + 135 x^{13} - 465 x^{12} + 6825 x^{11} - 14202 x^{10} + 161325 x^{9} - 171900 x^{8} + 1776615 x^{7} + 2275555 x^{6} + 6608476 x^{5} + 35139510 x^{4} - 35275635 x^{3} + 237235950 x^{2} - 216139110 x + 963981822 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21919782836729069869914926177537862000000000=-\,2^{10}\cdot 3^{12}\cdot 5^{9}\cdot 31^{13}\cdot 61^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $775.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{93} a^{10} - \frac{40}{93} a^{9} + \frac{22}{93} a^{8} - \frac{38}{93} a^{7} - \frac{4}{93} a^{6} + \frac{1}{3} a^{5} - \frac{15}{31} a^{4} + \frac{5}{31} a^{3} + \frac{7}{31} a^{2} + \frac{9}{31} a + \frac{12}{31}$, $\frac{1}{279} a^{11} + \frac{1}{93} a^{9} + \frac{5}{279} a^{8} - \frac{4}{31} a^{7} - \frac{4}{31} a^{6} + \frac{79}{279} a^{5} - \frac{2}{31} a^{4} - \frac{10}{93} a^{3} - \frac{7}{31} a^{2} + \frac{46}{93}$, $\frac{1}{1395} a^{12} + \frac{2}{1395} a^{11} + \frac{1}{465} a^{10} - \frac{268}{1395} a^{9} + \frac{532}{1395} a^{8} - \frac{74}{155} a^{7} + \frac{7}{1395} a^{6} - \frac{139}{1395} a^{5} + \frac{164}{465} a^{4} - \frac{227}{465} a^{3} - \frac{9}{31} a^{2} + \frac{139}{465} a + \frac{92}{465}$, $\frac{1}{1395} a^{13} - \frac{1}{1395} a^{11} - \frac{4}{1395} a^{10} + \frac{11}{465} a^{9} + \frac{5}{279} a^{8} - \frac{551}{1395} a^{7} + \frac{18}{155} a^{6} - \frac{125}{279} a^{5} + \frac{3}{31} a^{4} - \frac{191}{465} a^{3} - \frac{26}{465} a^{2} - \frac{27}{155} a - \frac{199}{465}$, $\frac{1}{1972355333240546064887695128847754729443046745} a^{14} - \frac{704799413040151670811061092438176189058458}{1972355333240546064887695128847754729443046745} a^{13} - \frac{200485327521985869428491457777982924248947}{657451777746848688295898376282584909814348915} a^{12} - \frac{140491527919014209240156697944275369218191}{1972355333240546064887695128847754729443046745} a^{11} - \frac{1926960857229417418589800800900326209972895}{394471066648109212977539025769550945888609349} a^{10} + \frac{18584534898797118096257444808372982893766282}{657451777746848688295898376282584909814348915} a^{9} + \frac{855542479696544537589289914011032460830196954}{1972355333240546064887695128847754729443046745} a^{8} + \frac{167522237264446058549895350209223832399256487}{394471066648109212977539025769550945888609349} a^{7} - \frac{22208562993742725093579340661465302963234139}{219150592582282896098632792094194969938116305} a^{6} + \frac{27513822558973361389146826525864346809441945}{394471066648109212977539025769550945888609349} a^{5} - \frac{99212682250585605032340096583530331958668902}{219150592582282896098632792094194969938116305} a^{4} + \frac{264611816725784357596650108784052742029425397}{657451777746848688295898376282584909814348915} a^{3} - \frac{94615198607901637275961837483720570003628453}{657451777746848688295898376282584909814348915} a^{2} - \frac{52361641251639871118663352428595158493676017}{219150592582282896098632792094194969938116305} a + \frac{143506793071094938705334495560319545787643647}{657451777746848688295898376282584909814348915}$
Class group and class number
$C_{5}\times C_{15}$, which has order $75$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 185624234491811.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.7564.1, 5.1.9350650125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| $31$ | 31.5.4.3 | $x^{5} - 1519$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 31.10.9.2 | $x^{10} - 1519$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |