Normalized defining polynomial
\( x^{15} - 5 x^{14} - 50 x^{13} + 400 x^{12} + 405 x^{11} - 10957 x^{10} + 21460 x^{9} + 138610 x^{8} - 862280 x^{7} + 954040 x^{6} + 3131424 x^{5} + 20480 x^{4} - 22766960 x^{3} + 50225840 x^{2} - 74460160 x + 93869216 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2159687645407390587226247752000000000000000=-\,2^{18}\cdot 5^{15}\cdot 11^{13}\cdot 379^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $664.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 379$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5}$, $\frac{1}{44} a^{10} - \frac{5}{44} a^{8} - \frac{1}{44} a^{6} + \frac{1}{44} a^{4} + \frac{4}{11} a^{2} - \frac{3}{11}$, $\frac{1}{88} a^{11} - \frac{1}{88} a^{10} + \frac{3}{44} a^{9} - \frac{3}{44} a^{8} + \frac{21}{88} a^{7} - \frac{21}{88} a^{6} + \frac{3}{22} a^{5} - \frac{3}{22} a^{4} + \frac{2}{11} a^{3} - \frac{2}{11} a^{2} + \frac{4}{11} a - \frac{4}{11}$, $\frac{1}{176} a^{12} - \frac{1}{176} a^{11} - \frac{1}{88} a^{10} + \frac{1}{11} a^{9} + \frac{17}{176} a^{8} - \frac{21}{176} a^{7} + \frac{5}{44} a^{6} + \frac{5}{88} a^{5} - \frac{9}{44} a^{4} + \frac{7}{44} a^{3} + \frac{5}{11} a^{2} + \frac{7}{22} a - \frac{5}{11}$, $\frac{1}{176} a^{13} - \frac{1}{176} a^{11} + \frac{1}{176} a^{9} + \frac{41}{176} a^{7} + \frac{21}{88} a^{5} - \frac{9}{44} a^{3} - \frac{1}{2} a^{2} + \frac{5}{22} a$, $\frac{1}{966986416121815752983865804066930971552} a^{14} + \frac{2302880584313025474533378789165684129}{966986416121815752983865804066930971552} a^{13} + \frac{558574311188738140734297890265987791}{483493208060907876491932902033465485776} a^{12} - \frac{2188120320986196626779264252284463403}{483493208060907876491932902033465485776} a^{11} - \frac{4999605765725525104192928779985530183}{966986416121815752983865804066930971552} a^{10} + \frac{70940824865507355713863565455232972925}{966986416121815752983865804066930971552} a^{9} + \frac{14722656519469974608003589833940751881}{241746604030453938245966451016732742888} a^{8} - \frac{352217620403710064900727783851801847}{10988482001384269920271202318942397404} a^{7} - \frac{58473478058690053779048239900330213549}{241746604030453938245966451016732742888} a^{6} - \frac{26570128444862511523625344592695558791}{120873302015226969122983225508366371444} a^{5} - \frac{13677207979017752620253726898261551439}{120873302015226969122983225508366371444} a^{4} - \frac{15537492166307225675419015067174859123}{60436651007613484561491612754183185722} a^{3} - \frac{6290354510580610920924749000141096735}{30218325503806742280745806377091592861} a^{2} + \frac{24317811924880246446680859794233981769}{60436651007613484561491612754183185722} a - \frac{5020593285052352286090672569938318539}{30218325503806742280745806377091592861}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 193308478043254.28 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.16676.1, 5.1.732050000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| $5$ | 5.15.15.40 | $x^{15} + 10 x^{14} + 5 x^{13} + 20 x^{12} + 20 x^{11} + 17 x^{10} + 10 x^{9} + 15 x^{8} + 12 x^{5} + 15 x^{3} + 10 x^{2} + 20 x + 17$ | $5$ | $3$ | $15$ | $F_5\times C_3$ | $[5/4]_{4}^{3}$ |
| $11$ | 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.9.8 | $x^{10} + 33$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 379 | Data not computed | ||||||