Normalized defining polynomial
\( x^{15} - 5 x^{14} - 40 x^{13} - 190 x^{12} + 2225 x^{11} + 9591 x^{10} + 8390 x^{9} - 366980 x^{8} - 2261440 x^{7} + 2732880 x^{6} + 18555360 x^{5} - 81164320 x^{4} + 192419200 x^{3} - 419916800 x^{2} - 3039303680 x - 2807964928 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-210051400399105472360464905891352000000000=-\,2^{12}\cdot 5^{9}\cdot 11^{13}\cdot 3769^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $568.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 3769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{9} + \frac{1}{8} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{176} a^{10} - \frac{1}{176} a^{9} - \frac{1}{88} a^{8} - \frac{7}{88} a^{7} + \frac{13}{176} a^{6} + \frac{1}{16} a^{5} + \frac{9}{44} a^{4} + \frac{21}{44} a^{3} - \frac{3}{11} a^{2} - \frac{5}{11} a + \frac{2}{11}$, $\frac{1}{352} a^{11} - \frac{1}{352} a^{10} + \frac{5}{88} a^{9} - \frac{7}{176} a^{8} - \frac{31}{352} a^{7} + \frac{1}{32} a^{6} - \frac{15}{176} a^{5} + \frac{21}{88} a^{4} + \frac{5}{44} a^{3} - \frac{5}{22} a^{2} - \frac{9}{22} a$, $\frac{1}{1760} a^{12} - \frac{1}{1760} a^{11} - \frac{1}{440} a^{10} - \frac{39}{880} a^{9} + \frac{21}{352} a^{8} - \frac{181}{1760} a^{7} - \frac{39}{880} a^{6} + \frac{87}{440} a^{5} - \frac{37}{220} a^{4} - \frac{31}{220} a^{3} + \frac{26}{55} a^{2} + \frac{1}{11} a - \frac{2}{55}$, $\frac{1}{3520} a^{13} - \frac{1}{3520} a^{12} - \frac{1}{880} a^{11} + \frac{1}{1760} a^{10} + \frac{5}{704} a^{9} + \frac{9}{320} a^{8} + \frac{61}{1760} a^{7} + \frac{17}{880} a^{6} - \frac{23}{110} a^{5} - \frac{1}{440} a^{4} + \frac{8}{55} a^{3} + \frac{5}{11} a^{2} + \frac{9}{55} a - \frac{3}{11}$, $\frac{1}{868757649569027417638341417319457692088877773440} a^{14} + \frac{107164063646212778965279834742606871617691017}{868757649569027417638341417319457692088877773440} a^{13} + \frac{114430252688852615135892565019299936401765967}{434378824784513708819170708659728846044438886720} a^{12} - \frac{85706609749291972655068027379850863110064293}{434378824784513708819170708659728846044438886720} a^{11} - \frac{323943751133506650113128876795513006357804363}{868757649569027417638341417319457692088877773440} a^{10} - \frac{40281713404829231279674761685343929681058170539}{868757649569027417638341417319457692088877773440} a^{9} - \frac{5699853737592182102186045706168449960574545799}{217189412392256854409585354329864423022219443360} a^{8} + \frac{26044377748434491973578355650659402017905700877}{217189412392256854409585354329864423022219443360} a^{7} + \frac{2661837119961038279743262594827414840333418959}{21718941239225685440958535432986442302221944336} a^{6} + \frac{1903001850679832201246832796083181778987401309}{9872246017829857018617516105902928319191792880} a^{5} - \frac{4737025341354610963946633452025682698404550289}{27148676549032106801198169291233052877777430420} a^{4} - \frac{5670342805611450952488714654652633892357573773}{13574338274516053400599084645616526438888715210} a^{3} - \frac{1381187883746952259586403878732924357636288904}{6787169137258026700299542322808263219444357605} a^{2} + \frac{2768511517372151117441024741844015642546889891}{6787169137258026700299542322808263219444357605} a + \frac{2806161481469594019224381252334516720030050642}{6787169137258026700299542322808263219444357605}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36942965423141.99 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.41459.1, 5.1.29282000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| $11$ | 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.9.2 | $x^{10} - 72171$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 3769 | Data not computed | ||||||