Normalized defining polynomial
\( x^{15} - 5 x^{13} - 45 x^{12} + 95 x^{11} + 542 x^{10} + 1100 x^{9} - 405 x^{8} - 9565 x^{7} - 12895 x^{6} + 12368 x^{5} + 235700 x^{4} + 523280 x^{3} + 1319840 x^{2} + 1167680 x + 1504832 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-202943411290645599365234375=-\,5^{24}\cdot 23^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{10} + \frac{1}{6} a^{7} - \frac{1}{4} a^{6} + \frac{1}{6} a^{5} - \frac{1}{4} a^{4} + \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{8} - \frac{1}{4} a^{7} + \frac{1}{6} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{6} a^{3} - \frac{5}{12} a^{2} + \frac{1}{6} a$, $\frac{1}{96} a^{12} + \frac{1}{48} a^{11} - \frac{1}{96} a^{10} - \frac{7}{96} a^{9} + \frac{1}{96} a^{8} + \frac{1}{24} a^{6} - \frac{5}{96} a^{5} - \frac{23}{96} a^{4} + \frac{9}{32} a^{3} - \frac{3}{16} a^{2} - \frac{1}{2} a + \frac{5}{12}$, $\frac{1}{192} a^{13} + \frac{1}{64} a^{11} - \frac{5}{192} a^{10} - \frac{3}{64} a^{9} + \frac{7}{96} a^{8} - \frac{5}{48} a^{7} + \frac{1}{64} a^{6} - \frac{13}{192} a^{5} + \frac{25}{192} a^{4} + \frac{5}{12} a^{3} - \frac{7}{48} a^{2} - \frac{11}{24} a - \frac{5}{12}$, $\frac{1}{8325914598136710761841355130496} a^{14} + \frac{8738662633968643567023897107}{4162957299068355380920677565248} a^{13} + \frac{18698101520348116576885876931}{8325914598136710761841355130496} a^{12} - \frac{26126027522439604117870019155}{8325914598136710761841355130496} a^{11} + \frac{56272159320057600016664307625}{8325914598136710761841355130496} a^{10} - \frac{24981816038039422244672989019}{346913108255696281743389797104} a^{9} + \frac{3428753140604814130129106692}{65046207797943052826885586957} a^{8} - \frac{1023245397441856586868580958197}{8325914598136710761841355130496} a^{7} + \frac{660506539032227794096451667925}{8325914598136710761841355130496} a^{6} - \frac{541263929532522815238491112071}{2775304866045570253947118376832} a^{5} + \frac{201896196752123297496693247867}{4162957299068355380920677565248} a^{4} + \frac{77965728917715479995341682547}{189225331775834335496394434784} a^{3} - \frac{10074446403853194433598892965}{86728277063924070435847449276} a^{2} + \frac{42144653439019908362921589511}{260184831191772211307542347828} a - \frac{93975527832714931385326871455}{260184831191772211307542347828}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26468773.865 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:S_3$ (as 15T14):
| A solvable group of order 150 |
| The 13 conjugacy class representatives for $(C_5^2 : C_3):C_2$ |
| Character table for $(C_5^2 : C_3):C_2$ |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{5}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.5.8.6 | $x^{5} + 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $D_{5}$ | $[2]^{2}$ |
| 5.10.16.24 | $x^{10} + 30 x^{9} + 25 x^{8} + 10 x^{5} + 525 x^{4} + 25$ | $5$ | $2$ | $16$ | $D_5\times C_5$ | $[2, 2]^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.10.5.2 | $x^{10} - 279841 x^{2} + 12872686$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |