Normalized defining polynomial
\( x^{15} - 5 x^{14} + 105 x^{13} - 340 x^{12} + 3985 x^{11} - 7051 x^{10} + 68715 x^{9} - 29340 x^{8} + 545195 x^{7} + 913895 x^{6} + 1981059 x^{5} + 7949350 x^{4} + 1415200 x^{3} + 22609900 x^{2} - 20821100 x + 59344580 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1956208803104312462005615234375000000000000=-\,2^{12}\cdot 5^{28}\cdot 19^{5}\cdot 349^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $659.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 349$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{50} a^{10} + \frac{1}{5} a^{9} + \frac{3}{10} a^{8} + \frac{1}{10} a^{7} + \frac{1}{10} a^{6} - \frac{3}{50} a^{5} - \frac{1}{2} a^{3} - \frac{1}{5}$, $\frac{1}{50} a^{11} - \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{10} a^{7} + \frac{11}{25} a^{6} - \frac{2}{5} a^{5} - \frac{1}{2} a^{3} - \frac{1}{5} a$, $\frac{1}{50} a^{12} + \frac{1}{10} a^{9} - \frac{2}{5} a^{8} + \frac{11}{25} a^{7} + \frac{1}{10} a^{6} + \frac{2}{5} a^{5} - \frac{1}{2} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{50} a^{13} + \frac{1}{10} a^{9} + \frac{11}{25} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{3}{10} a^{5} - \frac{1}{5} a^{3}$, $\frac{1}{231255998402636882120305506058385507965250} a^{14} - \frac{177979276687625023940466911089822752451}{115627999201318441060152753029192753982625} a^{13} - \frac{2083708884436138040141842845891669266561}{231255998402636882120305506058385507965250} a^{12} + \frac{995010051645552489067917678830376718176}{115627999201318441060152753029192753982625} a^{11} + \frac{699694022548558779759869105744015739768}{115627999201318441060152753029192753982625} a^{10} - \frac{1565233968206386859909839809768736284164}{115627999201318441060152753029192753982625} a^{9} - \frac{32999189620350842339670559397448547701272}{115627999201318441060152753029192753982625} a^{8} + \frac{18268001177549603041558658417778788193233}{231255998402636882120305506058385507965250} a^{7} + \frac{39810885187986184635805567434088737939072}{115627999201318441060152753029192753982625} a^{6} - \frac{70352265186137053684970491067935255533033}{231255998402636882120305506058385507965250} a^{5} - \frac{6818943594630606604727200694736247204987}{46251199680527376424061101211677101593050} a^{4} - \frac{1738120088912654951819396761047954384291}{46251199680527376424061101211677101593050} a^{3} + \frac{1561589997867628624254635447548063142381}{23125599840263688212030550605838550796525} a^{2} + \frac{8137823536084587770138162221674306626333}{23125599840263688212030550605838550796525} a - \frac{3819229727935747493892985332503209612606}{23125599840263688212030550605838550796525}$
Class group and class number
$C_{21}$, which has order $21$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 158198517094902.34 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.33155.1, 5.1.31250000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.5.9.5 | $x^{5} + 105$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ |
| 5.10.19.4 | $x^{10} + 105$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 349 | Data not computed | ||||||