Normalized defining polynomial
\( x^{15} - x^{14} + 80 x^{13} + 48 x^{12} + 1585 x^{11} + 16969 x^{10} - 6733 x^{9} + 126897 x^{8} - 167121 x^{7} - 6668441 x^{6} - 1834549 x^{5} - 49323325 x^{4} - 48976404 x^{3} - 38132480 x^{2} - 21240983 x - 28629151 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-19194711673970613594516583376070000000000=-\,2^{10}\cdot 3^{13}\cdot 5^{10}\cdot 19^{13}\cdot 31^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $484.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{62} a^{8} + \frac{11}{62} a^{7} - \frac{5}{62} a^{6} - \frac{6}{31} a^{5} - \frac{8}{31} a^{4} + \frac{3}{31} a^{3} - \frac{27}{62} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{62} a^{9} - \frac{1}{31} a^{7} - \frac{19}{62} a^{6} - \frac{4}{31} a^{5} - \frac{2}{31} a^{4} - \frac{1}{2} a^{3} + \frac{9}{31} a^{2} - \frac{1}{2}$, $\frac{1}{62} a^{10} + \frac{3}{62} a^{7} - \frac{9}{31} a^{6} - \frac{14}{31} a^{5} - \frac{1}{62} a^{4} + \frac{15}{31} a^{3} + \frac{4}{31} a^{2} - \frac{1}{2} a$, $\frac{1}{1922} a^{11} - \frac{1}{1922} a^{10} - \frac{13}{1922} a^{9} - \frac{7}{961} a^{8} + \frac{64}{961} a^{7} - \frac{87}{961} a^{6} + \frac{521}{1922} a^{5} - \frac{513}{1922} a^{4} - \frac{9}{62} a^{3} - \frac{1}{31} a^{2}$, $\frac{1}{27467302} a^{12} - \frac{2791}{27467302} a^{11} + \frac{14207}{13733651} a^{10} - \frac{153557}{27467302} a^{9} - \frac{106915}{27467302} a^{8} - \frac{1241693}{27467302} a^{7} - \frac{4556603}{27467302} a^{6} - \frac{2887116}{13733651} a^{5} + \frac{77995}{886042} a^{4} + \frac{102487}{443021} a^{3} + \frac{6587}{14291} a^{2} + \frac{5433}{14291} a + \frac{31}{922}$, $\frac{1}{137336510} a^{13} - \frac{1}{68668255} a^{12} + \frac{2164}{68668255} a^{11} - \frac{879347}{137336510} a^{10} + \frac{103858}{13733651} a^{9} + \frac{198776}{68668255} a^{8} + \frac{1364922}{13733651} a^{7} + \frac{15165427}{68668255} a^{6} + \frac{11978205}{27467302} a^{5} + \frac{342274}{2215105} a^{4} + \frac{1055393}{4430210} a^{3} - \frac{6653}{28582} a^{2} - \frac{2488}{71455} a - \frac{209}{4610}$, $\frac{1}{1636874278175662020192948062135660} a^{14} + \frac{181187099260632819495164}{409218569543915505048237015533915} a^{13} - \frac{5600701540581175661289317}{409218569543915505048237015533915} a^{12} + \frac{170501040023763095723770591171}{818437139087831010096474031067830} a^{11} - \frac{12743166741671939591705887149151}{1636874278175662020192948062135660} a^{10} - \frac{1246385550088937985092414029469}{818437139087831010096474031067830} a^{9} - \frac{8975339222227230795421979578299}{1636874278175662020192948062135660} a^{8} - \frac{44129014223280228081216264135939}{409218569543915505048237015533915} a^{7} - \frac{5943170046192281864637288073023}{52802396070182645812675743939860} a^{6} - \frac{124303027338543171208895825171}{26401198035091322906337871969930} a^{5} - \frac{479371276668280173690411328093}{1703303099038149864925023998060} a^{4} + \frac{93902086512487827325109454847}{851651549519074932462511999030} a^{3} + \frac{10052384022535626978901021967}{27472630629647578466532645130} a^{2} + \frac{5632846137855320106658464497}{13736315314823789233266322565} a - \frac{621609885686252882842805447}{1772427782557908288163396460}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42285044175841.24 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.35340.1, 5.1.1319500125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ |
| 19.10.9.2 | $x^{10} + 76$ | $10$ | $1$ | $9$ | $D_{10}$ | $[\ ]_{10}^{2}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |