Properties

Label 15.1.176...663.1
Degree $15$
Signature $[1, 7]$
Discriminant $-1.766\times 10^{21}$
Root discriminant \(26.09\)
Ramified primes $3,47$
Class number $3$
Class group [3]
Galois group $D_{15}$ (as 15T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 3*x^13 - 17*x^12 - 27*x^11 + 48*x^10 + 165*x^9 + 306*x^8 - 45*x^7 - 918*x^6 - 1251*x^5 - 633*x^4 + 2241*x^3 + 864*x^2 - 675*x - 325)
 
gp: K = bnfinit(y^15 - 3*y^13 - 17*y^12 - 27*y^11 + 48*y^10 + 165*y^9 + 306*y^8 - 45*y^7 - 918*y^6 - 1251*y^5 - 633*y^4 + 2241*y^3 + 864*y^2 - 675*y - 325, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^15 - 3*x^13 - 17*x^12 - 27*x^11 + 48*x^10 + 165*x^9 + 306*x^8 - 45*x^7 - 918*x^6 - 1251*x^5 - 633*x^4 + 2241*x^3 + 864*x^2 - 675*x - 325);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 3*x^13 - 17*x^12 - 27*x^11 + 48*x^10 + 165*x^9 + 306*x^8 - 45*x^7 - 918*x^6 - 1251*x^5 - 633*x^4 + 2241*x^3 + 864*x^2 - 675*x - 325)
 

\( x^{15} - 3 x^{13} - 17 x^{12} - 27 x^{11} + 48 x^{10} + 165 x^{9} + 306 x^{8} - 45 x^{7} - 918 x^{6} + \cdots - 325 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $15$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-1766485593616332297663\) \(\medspace = -\,3^{20}\cdot 47^{7}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(26.09\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{4/3}47^{1/2}\approx 29.66269470481324$
Ramified primes:   \(3\), \(47\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-47}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5}a^{12}+\frac{2}{5}a^{11}-\frac{2}{5}a^{10}-\frac{2}{5}a^{9}-\frac{1}{5}a^{7}-\frac{2}{5}a^{6}+\frac{1}{5}a^{4}-\frac{1}{5}a^{3}-\frac{1}{5}a^{2}-\frac{2}{5}a$, $\frac{1}{10585}a^{13}-\frac{934}{10585}a^{12}+\frac{1236}{10585}a^{11}+\frac{892}{2117}a^{10}-\frac{152}{365}a^{9}+\frac{3879}{10585}a^{8}-\frac{3476}{10585}a^{7}+\frac{5172}{10585}a^{6}+\frac{2851}{10585}a^{5}+\frac{763}{10585}a^{4}-\frac{143}{2117}a^{3}-\frac{161}{10585}a^{2}+\frac{2042}{10585}a-\frac{72}{2117}$, $\frac{1}{15\!\cdots\!65}a^{14}+\frac{401251463169}{15\!\cdots\!65}a^{13}+\frac{10307305984552}{207948175783205}a^{12}-\frac{45\!\cdots\!38}{15\!\cdots\!65}a^{11}-\frac{369222989661827}{15\!\cdots\!65}a^{10}-\frac{476935187284568}{11\!\cdots\!05}a^{9}-\frac{68\!\cdots\!44}{15\!\cdots\!65}a^{8}-\frac{60\!\cdots\!33}{15\!\cdots\!65}a^{7}+\frac{40\!\cdots\!03}{15\!\cdots\!65}a^{6}-\frac{46\!\cdots\!44}{15\!\cdots\!65}a^{5}-\frac{26\!\cdots\!64}{15\!\cdots\!65}a^{4}-\frac{62\!\cdots\!78}{15\!\cdots\!65}a^{3}-\frac{192100935619007}{798958780640735}a^{2}-\frac{49\!\cdots\!68}{15\!\cdots\!65}a+\frac{79799278342637}{233541797418061}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}$, which has order $3$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{1592829194301}{13\!\cdots\!15}a^{14}+\frac{4384558055916}{13\!\cdots\!15}a^{13}-\frac{2016727510856}{13\!\cdots\!15}a^{12}-\frac{38832168663954}{13\!\cdots\!15}a^{11}-\frac{125200191811059}{13\!\cdots\!15}a^{10}-\frac{7221393526269}{106155362462755}a^{9}+\frac{371330561726109}{13\!\cdots\!15}a^{8}+\frac{12\!\cdots\!74}{13\!\cdots\!15}a^{7}+\frac{356941889703008}{276003942403163}a^{6}-\frac{508689902277252}{13\!\cdots\!15}a^{5}-\frac{53\!\cdots\!82}{13\!\cdots\!15}a^{4}-\frac{87\!\cdots\!09}{13\!\cdots\!15}a^{3}-\frac{215638712043579}{72632616421885}a^{2}+\frac{56\!\cdots\!69}{13\!\cdots\!15}a+\frac{70984366789457}{21231072492551}$, $\frac{5629831431534}{13\!\cdots\!15}a^{14}+\frac{10688696037}{276003942403163}a^{13}-\frac{15334379787898}{13\!\cdots\!15}a^{12}-\frac{19491964826706}{276003942403163}a^{11}-\frac{160681967184501}{13\!\cdots\!15}a^{10}+\frac{18560633336458}{106155362462755}a^{9}+\frac{180380918840238}{276003942403163}a^{8}+\frac{377659362551283}{276003942403163}a^{7}+\frac{101615365058747}{13\!\cdots\!15}a^{6}-\frac{46\!\cdots\!02}{13\!\cdots\!15}a^{5}-\frac{14\!\cdots\!80}{276003942403163}a^{4}-\frac{58\!\cdots\!61}{13\!\cdots\!15}a^{3}+\frac{103089381921666}{14526523284377}a^{2}+\frac{28\!\cdots\!88}{13\!\cdots\!15}a-\frac{9255597295505}{21231072492551}$, $\frac{51337443435119}{15\!\cdots\!65}a^{14}+\frac{46006182354944}{15\!\cdots\!65}a^{13}-\frac{22266481186831}{30\!\cdots\!93}a^{12}-\frac{995878450915278}{15\!\cdots\!65}a^{11}-\frac{22\!\cdots\!84}{15\!\cdots\!65}a^{10}+\frac{25336849483533}{11\!\cdots\!05}a^{9}+\frac{92\!\cdots\!46}{15\!\cdots\!65}a^{8}+\frac{24\!\cdots\!02}{15\!\cdots\!65}a^{7}+\frac{18\!\cdots\!37}{15\!\cdots\!65}a^{6}-\frac{30\!\cdots\!48}{15\!\cdots\!65}a^{5}-\frac{99\!\cdots\!09}{15\!\cdots\!65}a^{4}-\frac{23\!\cdots\!47}{30\!\cdots\!93}a^{3}+\frac{790551326474543}{798958780640735}a^{2}+\frac{85\!\cdots\!23}{15\!\cdots\!65}a+\frac{432203516378709}{233541797418061}$, $\frac{14425986153171}{15\!\cdots\!65}a^{14}+\frac{5732595271374}{15\!\cdots\!65}a^{13}-\frac{44574101657571}{15\!\cdots\!65}a^{12}-\frac{222099252467452}{15\!\cdots\!65}a^{11}-\frac{475040108446933}{15\!\cdots\!65}a^{10}+\frac{5067587682122}{233541797418061}a^{9}+\frac{18\!\cdots\!86}{15\!\cdots\!65}a^{8}+\frac{46\!\cdots\!14}{15\!\cdots\!65}a^{7}+\frac{36\!\cdots\!22}{15\!\cdots\!65}a^{6}-\frac{61\!\cdots\!79}{15\!\cdots\!65}a^{5}-\frac{17\!\cdots\!51}{15\!\cdots\!65}a^{4}-\frac{24\!\cdots\!41}{15\!\cdots\!65}a^{3}+\frac{467080072457006}{798958780640735}a^{2}+\frac{93\!\cdots\!96}{15\!\cdots\!65}a+\frac{27765319806118}{233541797418061}$, $\frac{70124683405058}{15\!\cdots\!65}a^{14}-\frac{4846019687211}{30\!\cdots\!93}a^{13}-\frac{197887360294797}{15\!\cdots\!65}a^{12}-\frac{11\!\cdots\!02}{15\!\cdots\!65}a^{11}-\frac{288016845760346}{30\!\cdots\!93}a^{10}+\frac{58310457482676}{233541797418061}a^{9}+\frac{19\!\cdots\!10}{30\!\cdots\!93}a^{8}+\frac{240677027470307}{207948175783205}a^{7}-\frac{95\!\cdots\!09}{15\!\cdots\!65}a^{6}-\frac{56\!\cdots\!24}{15\!\cdots\!65}a^{5}-\frac{62\!\cdots\!46}{15\!\cdots\!65}a^{4}-\frac{25\!\cdots\!41}{15\!\cdots\!65}a^{3}+\frac{82\!\cdots\!34}{798958780640735}a^{2}-\frac{11\!\cdots\!02}{15\!\cdots\!65}a-\frac{575822207787195}{233541797418061}$, $\frac{18041822402798}{15\!\cdots\!65}a^{14}+\frac{12814907788347}{15\!\cdots\!65}a^{13}-\frac{55389860715593}{15\!\cdots\!65}a^{12}-\frac{309921207910841}{15\!\cdots\!65}a^{11}-\frac{683309352570609}{15\!\cdots\!65}a^{10}+\frac{10035693699034}{233541797418061}a^{9}+\frac{29\!\cdots\!08}{15\!\cdots\!65}a^{8}+\frac{62\!\cdots\!32}{15\!\cdots\!65}a^{7}+\frac{11\!\cdots\!71}{15\!\cdots\!65}a^{6}-\frac{15\!\cdots\!47}{15\!\cdots\!65}a^{5}-\frac{19\!\cdots\!38}{15\!\cdots\!65}a^{4}-\frac{11\!\cdots\!73}{15\!\cdots\!65}a^{3}+\frac{21\!\cdots\!38}{798958780640735}a^{2}+\frac{87\!\cdots\!68}{15\!\cdots\!65}a-\frac{262966640746893}{233541797418061}$, $\frac{2574156898089}{13\!\cdots\!15}a^{14}+\frac{18602755734}{18904379616655}a^{13}-\frac{8672378031411}{13\!\cdots\!15}a^{12}-\frac{39576550709678}{13\!\cdots\!15}a^{11}-\frac{63048975287656}{13\!\cdots\!15}a^{10}+\frac{6342408229191}{106155362462755}a^{9}+\frac{348090147431623}{13\!\cdots\!15}a^{8}+\frac{593792378688893}{13\!\cdots\!15}a^{7}-\frac{112933679453149}{13\!\cdots\!15}a^{6}-\frac{328014209332058}{276003942403163}a^{5}-\frac{18\!\cdots\!34}{13\!\cdots\!15}a^{4}-\frac{367482265853981}{13\!\cdots\!15}a^{3}+\frac{189842015423577}{72632616421885}a^{2}+\frac{327151056783127}{13\!\cdots\!15}a-\frac{15115701958680}{21231072492551}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 14560.9805563 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{7}\cdot 14560.9805563 \cdot 3}{2\cdot\sqrt{1766485593616332297663}}\cr\approx \mathstrut & 0.401805525934 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^15 - 3*x^13 - 17*x^12 - 27*x^11 + 48*x^10 + 165*x^9 + 306*x^8 - 45*x^7 - 918*x^6 - 1251*x^5 - 633*x^4 + 2241*x^3 + 864*x^2 - 675*x - 325)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^15 - 3*x^13 - 17*x^12 - 27*x^11 + 48*x^10 + 165*x^9 + 306*x^8 - 45*x^7 - 918*x^6 - 1251*x^5 - 633*x^4 + 2241*x^3 + 864*x^2 - 675*x - 325, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^15 - 3*x^13 - 17*x^12 - 27*x^11 + 48*x^10 + 165*x^9 + 306*x^8 - 45*x^7 - 918*x^6 - 1251*x^5 - 633*x^4 + 2241*x^3 + 864*x^2 - 675*x - 325);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 3*x^13 - 17*x^12 - 27*x^11 + 48*x^10 + 165*x^9 + 306*x^8 - 45*x^7 - 918*x^6 - 1251*x^5 - 633*x^4 + 2241*x^3 + 864*x^2 - 675*x - 325);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{15}$ (as 15T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 30
The 9 conjugacy class representatives for $D_{15}$
Character table for $D_{15}$

Intermediate fields

3.1.3807.1, 5.1.2209.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 30
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.5.0.1}{5} }^{3}$ R ${\href{/padicField/5.2.0.1}{2} }^{7}{,}\,{\href{/padicField/5.1.0.1}{1} }$ $15$ ${\href{/padicField/11.2.0.1}{2} }^{7}{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.2.0.1}{2} }^{7}{,}\,{\href{/padicField/13.1.0.1}{1} }$ $15$ ${\href{/padicField/19.2.0.1}{2} }^{7}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.2.0.1}{2} }^{7}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.2.0.1}{2} }^{7}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.2.0.1}{2} }^{7}{,}\,{\href{/padicField/31.1.0.1}{1} }$ $15$ ${\href{/padicField/41.2.0.1}{2} }^{7}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.2.0.1}{2} }^{7}{,}\,{\href{/padicField/43.1.0.1}{1} }$ R $15$ $15$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.15.20.65$x^{15} + 30 x^{14} + 360 x^{13} + 2175 x^{12} + 6840 x^{11} + 11016 x^{10} + 13050 x^{9} + 21060 x^{8} + 9720 x^{7} + 24084 x^{6} + 55728 x^{5} + 167184 x^{4} + 79137 x^{3} + 474822 x^{2} + 138024$$3$$5$$20$$C_{15}$$[2]^{5}$
\(47\) Copy content Toggle raw display $\Q_{47}$$x + 42$$1$$1$$0$Trivial$[\ ]$
47.2.1.2$x^{2} + 47$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.1.2$x^{2} + 47$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.1.2$x^{2} + 47$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.1.2$x^{2} + 47$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.1.2$x^{2} + 47$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.1.2$x^{2} + 47$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.1.2$x^{2} + 47$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.47.2t1.a.a$1$ $ 47 $ \(\Q(\sqrt{-47}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.3807.3t2.a.a$2$ $ 3^{4} \cdot 47 $ 3.1.3807.1 $S_3$ (as 3T2) $1$ $0$
* 2.47.5t2.a.b$2$ $ 47 $ 5.1.2209.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.47.5t2.a.a$2$ $ 47 $ 5.1.2209.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.3807.15t2.a.a$2$ $ 3^{4} \cdot 47 $ 15.1.1766485593616332297663.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3807.15t2.a.b$2$ $ 3^{4} \cdot 47 $ 15.1.1766485593616332297663.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3807.15t2.a.c$2$ $ 3^{4} \cdot 47 $ 15.1.1766485593616332297663.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3807.15t2.a.d$2$ $ 3^{4} \cdot 47 $ 15.1.1766485593616332297663.1 $D_{15}$ (as 15T2) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.