Normalized defining polynomial
\( x^{15} - 5 x^{14} - 45 x^{13} + 60 x^{12} + 1485 x^{11} + 1893 x^{10} - 18615 x^{9} - 115260 x^{8} - 338145 x^{7} + 1456855 x^{6} + 1635325 x^{5} - 17048850 x^{4} + 2426400 x^{3} - 18672300 x^{2} - 80668500 x - 122095500 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-172832712591425821508917768538520000000000=-\,2^{12}\cdot 3^{13}\cdot 5^{10}\cdot 11^{13}\cdot 151^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $561.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{10} a^{9} - \frac{1}{10} a^{8} - \frac{1}{5} a^{7} + \frac{1}{10} a^{6} + \frac{1}{5} a^{5} - \frac{3}{10} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{330} a^{10} + \frac{1}{165} a^{9} - \frac{1}{30} a^{8} - \frac{137}{330} a^{7} + \frac{131}{330} a^{6} - \frac{25}{66} a^{5} + \frac{4}{11} a^{4} + \frac{7}{22} a^{3} + \frac{3}{11} a - \frac{4}{11}$, $\frac{1}{330} a^{11} - \frac{1}{22} a^{9} + \frac{17}{330} a^{8} + \frac{3}{110} a^{7} + \frac{47}{110} a^{6} + \frac{53}{165} a^{5} - \frac{1}{110} a^{4} + \frac{4}{11} a^{3} + \frac{3}{11} a^{2} + \frac{1}{11} a - \frac{3}{11}$, $\frac{1}{1650} a^{12} + \frac{8}{165} a^{9} + \frac{1}{22} a^{8} - \frac{12}{25} a^{7} - \frac{47}{165} a^{6} - \frac{23}{55} a^{5} + \frac{29}{110} a^{4} - \frac{27}{55} a^{3} - \frac{2}{11} a^{2} + \frac{4}{11} a - \frac{1}{11}$, $\frac{1}{1650} a^{13} + \frac{8}{165} a^{9} - \frac{7}{150} a^{8} + \frac{26}{165} a^{7} + \frac{109}{330} a^{6} - \frac{157}{330} a^{5} + \frac{43}{110} a^{4} + \frac{5}{22} a^{3} + \frac{4}{11} a^{2} - \frac{5}{11} a - \frac{2}{11}$, $\frac{1}{34877103031809019736977248999600788204550} a^{14} - \frac{1218837334767438421782055706104028018}{5812850505301503289496208166600131367425} a^{13} + \frac{1027764851382166510086352937936825777}{3875233670201002192997472111066754244950} a^{12} + \frac{58335635987825029254241307941634629}{77504673404020043859949442221335084899} a^{11} - \frac{503557984183160118731445644217394989}{775046734040200438599494422213350848990} a^{10} + \frac{284603423204044228190893467509893447643}{5812850505301503289496208166600131367425} a^{9} + \frac{725185682286090536711363761027553813527}{11625701010603006578992416333200262734850} a^{8} + \frac{1616043772307476499360243515513982355499}{5812850505301503289496208166600131367425} a^{7} - \frac{6096555021412965221132444349781223983}{70458794003654585327226765655759168090} a^{6} + \frac{275771245309665774327772326881239117729}{3487710303180901973697724899960078820455} a^{5} - \frac{360787208632848519059504365222786773223}{2325140202120601315798483266640052546970} a^{4} + \frac{100373461413687566366869369985970516588}{387523367020100219299747211106675424495} a^{3} - \frac{21046271596354560740731301618027397349}{77504673404020043859949442221335084899} a^{2} - \frac{4229188255819071897677889759172446904}{77504673404020043859949442221335084899} a + \frac{60683874239573599801135356291632894138}{232514020212060131579848326664005254697}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161101180902933.84 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.24915.1, 5.1.2371842000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $151$ | $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 151.2.1.1 | $x^{2} - 151$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.1 | $x^{2} - 151$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.1 | $x^{2} - 151$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.1 | $x^{2} - 151$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.1 | $x^{2} - 151$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |