Normalized defining polynomial
\( x^{15} - 7 x^{14} - 28 x^{13} - 144 x^{12} + 2095 x^{11} + 337 x^{10} - 19903 x^{9} - 160455 x^{8} + 1090677 x^{7} - 522869 x^{6} - 10364275 x^{5} + 26986175 x^{4} + 362562 x^{3} - 96560678 x^{2} + 149601655 x - 74596195 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-163587563515302975177730470000000000=-\,2^{10}\cdot 3^{13}\cdot 5^{10}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $222.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{2} - \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{6} - \frac{1}{6} a^{3} + \frac{1}{6}$, $\frac{1}{18} a^{10} + \frac{1}{18} a^{8} + \frac{1}{3} a^{7} - \frac{5}{18} a^{6} + \frac{5}{18} a^{4} - \frac{1}{18} a^{2} + \frac{5}{18}$, $\frac{1}{18} a^{11} + \frac{1}{18} a^{9} + \frac{7}{18} a^{7} - \frac{1}{3} a^{6} + \frac{5}{18} a^{5} - \frac{1}{18} a^{3} + \frac{1}{3} a^{2} - \frac{7}{18} a + \frac{1}{3}$, $\frac{1}{54} a^{12} - \frac{1}{54} a^{11} - \frac{1}{54} a^{10} - \frac{2}{27} a^{9} - \frac{2}{27} a^{8} - \frac{8}{27} a^{7} - \frac{1}{18} a^{6} - \frac{5}{54} a^{5} - \frac{11}{54} a^{4} + \frac{5}{27} a^{3} + \frac{8}{27} a^{2} - \frac{7}{27} a + \frac{13}{27}$, $\frac{1}{54} a^{13} + \frac{1}{54} a^{11} + \frac{1}{54} a^{10} + \frac{2}{27} a^{9} + \frac{2}{27} a^{8} + \frac{1}{27} a^{7} + \frac{7}{54} a^{6} - \frac{1}{54} a^{5} - \frac{25}{54} a^{4} + \frac{7}{27} a^{3} - \frac{2}{27} a^{2} - \frac{1}{2} a + \frac{11}{54}$, $\frac{1}{42299809901254664515398718962258053958} a^{14} + \frac{51555973784364171754928973248703493}{7049968316875777419233119827043008993} a^{13} + \frac{30139243629064359058055181735881365}{21149904950627332257699359481129026979} a^{12} + \frac{10569055278596337445926987945033916}{783329812986197491025902203004778777} a^{11} + \frac{185489894315848025756176470038023214}{7049968316875777419233119827043008993} a^{10} + \frac{127007761746724552139451981778824589}{1566659625972394982051804406009557554} a^{9} + \frac{3276570204746168520298778693539722853}{42299809901254664515398718962258053958} a^{8} + \frac{15478988428518346517355059279350633}{829408037279503225792131744358001058} a^{7} + \frac{6115711852272295382853487536805197772}{21149904950627332257699359481129026979} a^{6} + \frac{702973161808903260096899116937344693}{7049968316875777419233119827043008993} a^{5} + \frac{2154478900899238232657590277377258559}{7049968316875777419233119827043008993} a^{4} - \frac{6284586167954209982999094880534456783}{14099936633751554838466239654086017986} a^{3} + \frac{6657071017529562813438069430969430426}{21149904950627332257699359481129026979} a^{2} - \frac{2218712287116351634016011685607741503}{14099936633751554838466239654086017986} a - \frac{2413533478161900390815998988282437787}{21149904950627332257699359481129026979}$
Class group and class number
$C_{30}$, which has order $30$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 69747520577.13919 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.1740.1, 5.1.7161220125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.5.4.1 | $x^{5} - 29$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ |
| 29.10.9.2 | $x^{10} + 58$ | $10$ | $1$ | $9$ | $D_{10}$ | $[\ ]_{10}^{2}$ |