Normalized defining polynomial
\( x^{15} - 5 x^{14} + 5 x^{13} - 120 x^{12} + 250 x^{11} + 650 x^{10} + 4235 x^{9} - 2970 x^{8} - 11100 x^{7} - 38665 x^{6} + 40325 x^{5} + 89950 x^{4} + 145530 x^{3} - 162925 x^{2} - 120050 x - 84035 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-144306410896033593750000000000=-\,2^{10}\cdot 3^{13}\cdot 5^{17}\cdot 41^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{8} - \frac{1}{3} a^{6} - \frac{1}{6} a^{4} + \frac{1}{3} a^{2} - \frac{1}{6}$, $\frac{1}{42} a^{11} + \frac{1}{21} a^{10} + \frac{19}{42} a^{9} + \frac{10}{21} a^{8} - \frac{1}{21} a^{7} + \frac{10}{21} a^{6} - \frac{1}{6} a^{5} - \frac{1}{21} a^{4} + \frac{1}{21} a^{3} + \frac{5}{21} a^{2} + \frac{5}{42} a - \frac{1}{3}$, $\frac{1}{294} a^{12} + \frac{1}{147} a^{11} + \frac{19}{294} a^{10} + \frac{31}{147} a^{9} - \frac{1}{147} a^{8} + \frac{73}{147} a^{7} - \frac{19}{42} a^{6} - \frac{64}{147} a^{5} - \frac{20}{147} a^{4} + \frac{5}{147} a^{3} - \frac{79}{294} a^{2} + \frac{5}{21} a$, $\frac{1}{2058} a^{13} + \frac{1}{1029} a^{12} + \frac{19}{2058} a^{11} + \frac{13}{2058} a^{10} - \frac{1}{1029} a^{9} + \frac{979}{2058} a^{8} + \frac{65}{294} a^{7} + \frac{93}{343} a^{6} - \frac{167}{1029} a^{5} - \frac{529}{2058} a^{4} - \frac{79}{2058} a^{3} + \frac{40}{147} a^{2} + \frac{2}{7} a + \frac{1}{6}$, $\frac{1}{309354006181947033741530099598} a^{14} - \frac{38238760662507593133849055}{309354006181947033741530099598} a^{13} + \frac{6240426577808467296013567}{3772609831487158948067440239} a^{12} - \frac{854425118334179029358273956}{154677003090973516870765049799} a^{11} + \frac{4350329651681875511420963485}{154677003090973516870765049799} a^{10} - \frac{108480728767453363888061373929}{309354006181947033741530099598} a^{9} - \frac{634110446940895014059780641}{2455190525253547886837540473} a^{8} - \frac{3725557994396623560304869643}{34372667353549670415725566622} a^{7} - \frac{16185471918528973267109369695}{103118002060649011247176699866} a^{6} + \frac{12082297133929760953942889459}{309354006181947033741530099598} a^{5} - \frac{652834403599915767841541720}{3772609831487158948067440239} a^{4} - \frac{9990134069578814805821986027}{44193429454563861963075728514} a^{3} + \frac{2125484962616926709148968879}{6313347064937694566153675502} a^{2} - \frac{142798297283097993218886065}{901906723562527795164810786} a - \frac{12918473745590761264311601}{128843817651789685023544398}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 545829701.3427438 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.12300.1, 5.1.253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.15.17.3 | $x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10$ | $15$ | $1$ | $17$ | $F_5 \times S_3$ | $[5/4]_{12}^{2}$ |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |